- Python 科学计算与机器学习入门:NumPy + Scikit-Learn 实战指南
吴师兄大模型
pythonnumpyscikit-learn人工智能开发语言机器学习编程
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 如何优化AI模型的Prompt:深度指南
Earth explosion
人工智能prompt
随着人工智能(AI)技术的快速发展,AI模型在文本生成、翻译、问答等领域的应用越来越广泛。在使用这些模型时,**Prompt(提示)**的质量直接影响输出结果的好坏。优化Prompt不仅能提升生成文本的准确性,还能显著提高工作效率。作为一个希望提升AI应用效果的普通人,如何才能优化Prompt呢?本文将为你提供一份详细的指南,涵盖从基础知识到高级技巧的各个方面。一、什么是Prompt?1.1定义P
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
深度学习人工智能机器学习
1.基本概念微调(Fine-tuning)定义:微调是指在预训练大语言模型的基础上,通过在特定领域或任务的数据上进一步训练,从而使模型在该特定任务上表现更优。目的:适应具体的任务需求,比如法律文书写作、医疗问答、金融分析等,使得模型能更好地理解和生成符合领域要求的内容。过程:通常涉及准备领域特定的数据集、设计合适的损失函数、调整超参数(例如学习率、批量大小等),以及选择冻结或解冻部分参数来更新模型
- RAG技术的PDF智能问答系统
AI Echoes
深度学习
关键要点系统基于RAG(检索增强生成)技术,允许用户上传PDF并进行智能问答。使用Ollama的deepseek-r1模型和FAISS向量数据库,支持普通对话和基于PDF的问答模式。提供简洁的Web界面,支持文件拖拽上传和多轮对话。研究表明,系统适合处理PDF内容查询,但性能可能因PDF复杂性而异。系统概述这个PDF智能问答系统是一个基于RAG技术的工具,旨在帮助用户通过上传PDF文件进行智能交互
- Java面试精选:Kafka+Zookeeper+redis+JVM+RabbitMQ,最全总结
我叫小迁W:bjmsb2019
Java架构面试数据库javaredismysql分布式
大家开始准备金九银十了吗?不知是跳槽还是找工作的朋友,趁现在增进一下自己的技术何尝不是一件好事呢?一、RabbitMQ1.rabbitmq的使用场景有哪些?2.rabbitmq有哪些重要的角色?3.rabbitmq有哪些重要的组件?4.rabbitmq中vhost的作用是什么?5.rabbitmq的消息是怎么发送的?6.rabbitmq怎么保证消息的稳定性?7.rabbitmq怎么避免消息丢失?8
- 聊天模型集成指南
三月七꧁ ꧂
langchain+llmmicrosoft语言模型prompt人工智能自然语言处理开发语言llama
文章目录聊天模型集成指南Anthropic聊天模型集成PaLM2聊天模型集成OpenAl聊天模型集成聊天模型集成指南 随着GPT-4等大语言模型的突破,聊天机器人已经不仅仅是简单的问答工具,它们现在广泛应用于客服、企业咨询、电子商务等多种场景,为用户提供准确、快速的反馈。在这样的背景下,开发者们急需一套可以轻松切换、集成不同平台的工具。正是基于这样的需求,Anthropic、PaLM2和Op
- 自然语言处理(NLP)技术介绍
风吹晚风悠
gpt人工智能nlp自然语言处理
自然语言处理(NLP)是一种涉及计算机和人类语言之间交流的技术。NLP技术可以应用于多个领域,例如机器翻译、情感分析、文本分类、问答系统等。以下是一些NLP技术的示例:机器翻译:NLP技术可用于将一个语言的文本自动翻译成另一个语言。例如,GoogleTranslate和百度翻译等在线翻译工具就使用了NLP技术。情感分析:NLP技术可用于分析文本中的情感和情感倾向。这可以帮助企业了解公众对其产品或服
- 深度解析AI智能助手系统架构:数据接入到平台管理的全景指南
AI大模型-搬运工
人工智能系统架构大语言模型深度学习自然语言处理AI智能助手大模型
在数字化转型的大潮中,AI智能助手在帮助企业优化运营、提高决策效率、增强用户体验方面发挥着不可替代的作用。本篇文章将带您深入了解一个典型的AI智能助手系统架构,并提供每个模块的具体实现方案,包括数据接入、模型配置、平台管理等核心模块,帮助企业更好地构建智能化业务流程。一、AI智能助手的核心功能及实现方案AI智能助手的核心功能包括自然语言问答、图表可视化、多维钻取、导出与收藏、需求理解与过程验证、用
- 解锁Linux命令行的终极指南:从日常操作到系统掌控
领码科技
技能篇Linux命令日常操作系统管理Shell脚本
摘要Linux操作系统凭借其开源、高效、稳定的特性,已成为开发者和运维工程师的核心工具。本文深度解析Linux命令的底层逻辑与实战技巧,涵盖文件管理、权限控制、进程监控、网络运维等高频场景,结合Shell脚本编写与正则表达式应用,助您实现从命令行基础到高阶系统管理的跃迁。精选80+核心指令详解,配合真实案例与避坑指南,让您轻松驾驭Linux系统的日常运维与深度优化。关键词:Linux命令、日常操作
- DeepSeek 面试题精选
CarlowZJ
DeepSeek
以下是针对DeepSeek面试的精选问题及解答,涵盖技术原理、模型架构、训练方法和应用场景等方面,供面试准备参考:一、DeepSeek模型架构与技术原理1.请简述DeepSeek-V3模型的总体架构和主要创新点。架构:DeepSeek-V3基于混合专家系统(MoE)架构,包含2048个领域专家模型,通过门控网络动态分配查询请求。创新点:使用多头潜在注意力(MLA)技术,通过低秩压缩降低KV缓存需求
- 【K8s】专题十六(3):Kubernetes 包管理工具之 Helm 语法
行者Sun1989
Kuberneteskubernetes容器云原生Helm
本文内容均来自个人笔记并重新梳理,如有错误欢迎指正!如果对您有帮助,烦请点赞、关注、转发、订阅专栏!专栏订阅入口|精选文章|Kubernetes|Docker|Linux|羊毛资源|工具推荐|往期精彩文章【Docker】(全网首发)KylinV10下MySQL容器内存占用异常的解决方法【Docker】(全网首发)KylinV10下MySQL容器内存占用异常的解决方法(续)【K8s】专题十六(2):
- Python 网络编程实战:5分钟实现多线程下载工具与 Web 服务器
吴师兄大模型
pythonWeb服务器多线程下载工具网络编程人工智能开发语言PYTHON
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【LLM大模型】大模型涌现能力及 Prompt Engineering提示词
Langchain
prompt人工智能llamalangchainai大模型LLM
涌现能力GPT3是第一批拥有“涌现能力”的大语言模型,即模型未经特定任务的训练,但在适当的提示下,仍然能够解决某些特定领域的问题。例如大语言模型可以解答数学问题、辅助进行编程、甚至是进行问答等,其实都属于模型的涌现能力。作为概率模型,大语言模型甚至不知道数字代表的真实含义,模型只是在学习了无数的语料之后,发现了一些数学结论之间的潜在概率关系,才最终涌现出了数学运算或者复杂推理的能力。但是“涌现能力
- 万人在单一世界互动问答集(1)---不使?用分片(sharding)?延迟(latency) 和 吞吐量(throughput)?
微网兔子
後端技術服务器c++架构虚拟现实物联网游戏游戏程序
问:60,000名玩家在同一世界真的可能吗?你们说不使用分片(sharding)就能做到,但是「伺服器网格化(servermeshing)」本质上也是一种分片?此外,我想知道你的延迟(latency)和吞吐量(throughput),以及如果这个技术是依赖「决定性(determinism)」?答:我们开发的技术将瓶颈从空间密集型转移到逻辑密集型,传统根据地理区域(空间密度)来切割游戏世界的Shar
- c语言程序设计---(动态内存分配)考研复试面试问答
眼镜蛇学习编程
c语言考研开发语言
动态内存分配1、malloc函数2、calloc函数3、realloc函数4、常见的动态内存错误动态内存分配1、malloc函数C语言提供了一个动态内存开辟的函数:void*malloc(size_tsize);这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。如果开辟成功,则返回一个指向开辟好空间的指针。如果开辟失败,则返回一个null指针。因此malloc函数的返回值一定要给做检
- 相同的问题看看Grok3怎么回答-Dify、RAG-Flow、FastGPT 核心特点对比
释迦呼呼
AI一千问人工智能深度学习机器学习自然语言处理算法
关键要点研究表明,Dify、RAG-Flow和FastGPT都是开源平台,专注于AI应用开发,特别是涉及RAG(检索增强生成)和知识库的场景。证据倾向于认为,Dify更通用,适合广泛的AI应用开发;RAG-Flow专注于深度文档理解的RAG引擎;FastGPT强调视觉工作流,适合构建知识库和问答系统。它们的区别在于平台类型、核心功能和目标用户,存在一些争议,如代理能力或文档处理复杂性。Dify、R
- 字典树(Trie) 理论知识复习及精选例题解析
BrainWen1
算法javac++数据结构pythonleetcodevscode
字典树理论知识复习及精选例题解析一、字典树理论知识二、精选例题解析例题1.P8306【模板】字典树例题2.P2580于是他错误的点名开始了例题3.P10471最大异或对TheXORLargestPair三、字典树的使用思路和细节使用思路细节注意四、总结一、字典树理论知识1.定义字典树(Trie)字典树(Trie)字典树(Trie),又称前缀树,是一种树形数据结构,用于高效地存储和检索字符串集合。它
- 从公布的11批其他算法类别分析
老赵聊算法、大模型备案
人工智能机器人算法AIGC语言模型
2025年3月12日,国家网信办分别发布了深度合成算法及互联网信息服务算法备案信息(其他类别算法)的公告,其中深度合成算法3月份批次通过共计395款,其他算法种类通过45款。具体分析如下:一、算法类别:序号算法类别数量占比1个性化推送类31749%2检索过滤类20431.53%3排序精选类578.81%4调度决策类599.12%5生成合成类101.55合计jxh152637647100%从算法类别
- RNN 实战指南:用 PyTorch 从零实现文本分类
吴师兄大模型
PyTorchpytorchpython人工智能RNN循环神经网络文本分类开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 计算机组成与接口11
落——枫
嵌入式硬件
1.CF进位标志位;PF奇偶标志位AF辅助进位标志位;ZF零标志位;SF符号标志位;OF溢出标志位;DF方向标志位;IF中断允许标志位;TF跟踪标志位;2.描述符表选择字段TI:段选择符中的D2位(TI)是描述符表选择字段,这个字段用来说明使用的是全局描述符表GDT,还是局部描述符表LDT3.Pentium微处理器执行完陷阱中断处理程序后,将执行断点处的程序4.8086CPU分配的中断类型码如下表
- 大语言模型(LLM)的微调与应用
AI Echoes
语言模型人工智能自然语言处理
一、微调与应用的核心区别目标差异微调(Fine-tuning):针对预训练模型进行参数调整,使其适应特定任务或领域(如医疗问答、法律文本分析)。需通过有监督微调(SFT)或低秩适配(LoRA)等技术优化模型权重。应用(Application):基于现有模型的能力构建实际系统(如智能客服、文档摘要),侧重于工程化集成和交互设计,通常不修改模型参数,而是通过Prompt工程、RAG(检索增强生成)或A
- Vue.js-Vue实例
推荐阅读原文学习笔记:Vue实例Vue实例组件间通信SeethePen组件间通信bywhjin(@whjin)onCodePen.用户信息表SeethePenzjagOybywhjin(@whjin)onCodePen.图书电商数据SeethePen图书电商数据bywhjin(@whjin)onCodePen.渲染微信精选数据SeethePen渲染微信精选数据bywhjin(@whjin)onCo
- 顺序结构双语言征服:C++与Python秒杀洛谷三大经典入门题
三流搬砖艺术家
算法算法c++数据结构
目录顺序结构核心思想题目一:P1001A+BProblem题目描述解题思路代码实现题目二:P1425小鱼的游泳时间题目描述解题思路代码实现题目三:P1421小玉买文具题目描述解题思路代码实现顺序结构四步心法常见问题与避坑指南实战扩展(LeetCode真题)顺序结构核心思想输入→处理→输出本文精选洛谷顺序结构题单中三大经典问题,通过C++与Python双语言对比实现,彻底掌握基础编程技巧!题目一:P
- AI双轨革命:DeepSeek与Manus
人工智能aigc
DeepSeek与Manus是当前人工智能领域备受关注的两款产品,它们在技术定位、核心能力及适用场景上存在显著差异,但并非直接竞争关系,而是形成互补。一、技术架构与核心能力DeepSeek:知识型“最强大脑”技术架构:基于混合专家模型(MoE),参数规模达6710亿,专注于语言模型的极致优化,擅长知识推理、文本生成与专业问题解答。核心优势:语言理解与生成:中文知识问答正确率达64.1%,在学术论文
- 大模型问答机器人如何实现自然交互
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
大模型问答机器人如何实现自然交互关键词:大模型问答机器人,自然语言处理(NLP),深度学习,深度对话,多轮对话,意图理解,信息检索,逻辑推理1.背景介绍1.1问题由来近年来,随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了巨大的突破。特别是深度学习模型在自然语言理解和生成方面的卓越表现,使得基于深度学习的大模型问答机器人(LargeLanguageModel-basedChatbots
- 全国计算机一级考试理论题第十套,2012年计算机一级B第十套选择题精选及参考答案...
孕产训导师单sir
全国计算机一级考试理论题第十套
【第十套】(1)在目前为止,微型计算机经历了几个阶段?A)8B)7C)6D)5(2)计算机辅助设计简称是?A)CAMB)CADC)CATD)CAI(3)二进制数11000000对应的十进制数是?A)384B)192C)96D)320(4)下列4种不同数制表示的数中,数值最大的一个是?A)八进制数110B)十进制数71C)十六进制数4AD)二进制数1001001(5)为了避免混淆,十六进制数在书写时
- AI问答-供应链管理:直接采购和间接采购有什么区别
快雪时晴-初晴融雪
供应链管理供应链管理
直接采购和间接采购是企业采购活动中的两种主要方式,它们在多个方面存在显著的区别。以下是关于直接采购和间接采购的详细对比:直接采购间接采购定义企业直接从生产商或供应商处购买所需的产品或服务,无需经过中间商或分销商。企业通过中间商(如贸易公司、物资公司、采购中介组织等)实施采购行为,也称委托采购或中介采购。服务对象主要服务于外部客户,用于产品生产及销售所需的物料与服务。主要服务于内部客户,支持产品生产
- MySQL有哪些高可用方案?
java1234_小锋
mysqljava开发语言
大家好,我是锋哥。今天分享关于【MySQL有哪些高可用方案?】面试题。希望对大家有帮助;MySQL有哪些高可用方案?1000道互联网大厂Java工程师精选面试题-Java资源分享网MySQL高可用(HighAvailability,HA)方案主要是通过一系列技术和架构来确保MySQL数据库在出现故障时仍然可以继续提供服务。以下是一些常见的MySQL高可用方案:1.主从复制(Master-Slave
- SpringBoot为什么默认使用CGLIB?
java1234_小锋
javajava开发语言
大家好,我是锋哥。今天分享关于【SpringBoot为什么默认使用CGLIB?】面试题。希望对大家有帮助;SpringBoot为什么默认使用CGLIB?1000道互联网大厂Java工程师精选面试题-Java资源分享网SpringBoot默认使用CGLIB(CodeGenerationLibrary)作为代理机制之一,主要是因为CGLIB在一些场景下相比于JDK动态代理具有更好的性能和灵活性,尤其在
- 如何快速定位慢SQL?
java1234_小锋
mysqljava面试开发语言
大家好,我是锋哥。今天分享关于【如何快速定位慢SQL?】面试题。希望对大家有帮助;如何快速定位慢SQL?1000道互联网大厂Java工程师精选面试题-Java资源分享网快速定位慢SQL的过程可以通过以下几种方法来实现。这些方法的关键在于尽早识别并分析性能瓶颈,逐步优化SQL查询。1.启用慢查询日志(MySQL为例)慢查询日志是检测慢SQL的一个重要工具。可以启用慢查询日志,记录执行时间超过阈值的查
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro