- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来.
人工智能
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来
ai开发
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- Crawl4AI 与 BrowserUseTool 的详细对比
燃灯工作室
Lmplement人工智能学习数学建模
以下是Crawl4AI与BrowserUseTool的详细对比,涵盖功能、技术实现、适用场景等核心维度:1.核心定位对比工具Crawl4AIBrowserUseTool类型专为AI优化的网络爬虫框架浏览器自动化工具(模拟人类操作浏览器)核心目标高效获取结构化数据供AI训练/推理处理需要浏览器交互的动态网页任务典型应用大规模数据抓取、知识库构建登录受限网站、抓取JavaScript渲染内容2.技术实
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
深度学习
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
人工智能
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 长文本、知识库、微调对比
司南锤
程序院学习人工智能
长文本、知识库和微调是三种不同的技术手段,用于增强大模型的能力。1.长文本处理•核心目标:理解和生成长篇内容。•优点:•连贯性强,适合处理需要深入理解背景信息的任务。•适合复杂任务,如长篇阅读理解或文章生成。•缺点:•资源消耗大,处理长文本需要更多的计算资源和内存。•受上下文长度限制,可能会丢失一些细节信息。•适用场景:•写作助手:生成长篇博客、报告或故事。•阅读理解:处理长篇阅读理解任务,如学术
- 【颠覆认知】大模型开发终极实战:30分钟用LangChain打造「超级AI客服」系统(附全代码+黑科技调参技巧)
煜bart
人工智能
重磅提示:文末含99%开发者不知道的Prompt逆向注入破解方案!---###一、撕开大模型开发的遮羞布:传统方案的三大致命陷阱传统AI客服系统开发面临:1.对话记忆金鱼症(7轮对话必失忆)2.知识库更新堪比器官移植3.业务逻辑与AI模型强耦合我们
- 基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调
汀、人工智能
LLM工业级落地实践LLM技术汇总langchain人工智能大模型推理大模型微调p-tuningfastchatRAG
基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调1.推荐的模型组合在默认的配置文件中,我们提供了以下模型组合LLM:Chatglm2-6bEmbeddingModels:m3e-baseTextSplitter:ChineseRecursiveTextSplitterKb_dataset:faiss我们推荐开发者根据自己的业务需求进行模型微调,如果不需
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来
开源
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 知识库全链路交互逻辑
賢843
软件测试理论基础python
阶段顺序URL输入→网络连接→前端请求→后端处理→数据库交互→数据返回→前端渲染→连接关闭阶段1:用户输入URL用户行为:在浏览器地址栏输入`https://knowledge.com/search?keyword=金融趋势`浏览器动作:“浏览器解析URL:协议补全:若用户省略协议,浏览器自动添加https://(若网站支持HTTPS)字符转义:对中文、空格等特殊字符编码(如金融趋势→%E9%
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- 【GPT入门】第16课 RAG入门
*星星之火*
大模型gpt
【GPT入门】第16课RAG入门1.RAG概念核心原理主要应用优势挑战RGA工作图解2.RAG系统基本搭建流程1.RAG概念RAG通常指检索增强生成(Retrieval-AugmentedGeneration),是一种将检索技术与生成式人工智能相结合的技术架构,以下是关于它的详细介绍:核心原理检索:RAG会在大量的文本数据中进行检索,这些数据可以是网页、文档、知识库等。它通过各种检索算法和技术,快
- 利用 DeepSeek 总结运维知识库的总结报告
缘来是黎
webankpython
一、背景在运维工作中,知识库是重要的知识沉淀与共享工具。随着公司业务的发展,运维涉及的系统、设备和技术日益复杂,原有的运维知识库内容繁杂、缺乏条理,难以高效检索和利用。为了提升知识库的可用性,我尝试借助DeepSeek这一强大的AI工具对其进行总结与优化。二、问题分析知识碎片化:原知识库中的知识分散在不同文档和记录中,缺乏统一的组织架构,导致查找特定知识时需要耗费大量时间。分类不清晰:知识分类不够
- SaaS+AI应用架构:业务场景、智能体、大模型、知识库、传统工具系统
公众号-AI架构师汤师爷
后端架构设计JavaSaaS
SaaS+AI应用架构:业务场景、智能体、大模型、知识库、传统工具系统大家好,我是汤师爷~在SaaS与AI应用的演进过程中,合理的架构设计至关重要。本节将详细介绍其五个核心层次:业务场景层:发现和确定业务场景智能体层:构建可复用的智能应用大模型层:采用最合适的大模型,作为思考推理的核心知识库:管理企业的核心知识资产传统工具:传统的运营工具和业务系统业务场景层:发现和确定业务场景业务场景层是整个Sa
- 相同的问题看看Grok3怎么回答-Dify、RAG-Flow、FastGPT 核心特点对比
释迦呼呼
AI一千问人工智能深度学习机器学习自然语言处理算法
关键要点研究表明,Dify、RAG-Flow和FastGPT都是开源平台,专注于AI应用开发,特别是涉及RAG(检索增强生成)和知识库的场景。证据倾向于认为,Dify更通用,适合广泛的AI应用开发;RAG-Flow专注于深度文档理解的RAG引擎;FastGPT强调视觉工作流,适合构建知识库和问答系统。它们的区别在于平台类型、核心功能和目标用户,存在一些争议,如代理能力或文档处理复杂性。Dify、R
- 【Agent实战】RAG方式+结构化prompt(CoT)+API工具结合ChatGPT4o能力Agent项目实践(货物上架位置推荐助手)
姚瑞南
RAG技术应用探索大模型落地探索及agent搭建promptchatgpt自然语言处理人工智能AIGC
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录结论效果图示1.prompt2.API工具封装3.知识库搭建4.测试用例结论成功利用ChatGPT4o版本结合RAG知识库方式,通过结构化prompt(CoT)调用API工具为用
- 在centos7虚拟机上离线更新dify
hongyinvjianke
linuxcentos
相关链接:dify项目git下载链接:https://github.com/langgenius/dify1.实现目标在离线设备上更新dify,并保留原始dify中的知识库、模版以及登录用户信息。2.前期准备联网设备A、已经部署过dify的离线设备B(centos7虚拟机)3.具体步骤3.1在联网设备A上下载最新的dify项目gitclonehttps://github.com/langgeniu
- AI学习指南RAG篇(7)-RAG知识库构建
俞兆鹏
AI学习指南ai
文章目录一、引言二、知识库构建过程1.数据收集1.1数据来源1.2示例代码2.预处理2.1数据清洗2.2示例代码2.3数据格式转换2.4示例代码3.分块3.1分块的目的3.2分块策略3.3示例代码4.向量化4.1向量化的目的4.2示例代码4.3向量数据库4.4示例代码三、总结一、引言在RAG(Retrieval-AugmentedGeneration,检索增强生成)系统中,知识库的构建是至关重要的
- 【无标题】DeepSeek是可对接那些端口
李鲶鱼
pythonc++人工智能
DeepSeek是一个强大的AI模型,可以应用于多个端口,为各种场景提供智能解决方案。移动端应用智能手机助手:DeepSeek集成到手机助手中,提供智能对话、文本写作、语言翻译等功能。例如,华为的小艺助手和荣耀的YOYO智能体通过接入DeepSeek,提升了对话流畅度和知识库的时效性。虚拟主播:利用DeepSeek生成虚拟主播,进行24小时优质播报。桌面端应用智能客服:在医院的官方公众号中接入De
- 向量空间与范数
Shockang
机器学习数学通关指南人工智能机器学习数学线性代数
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文一、向量空间:机器学习的舞台1.1定义与核心要素️向量空间是机器学习的数学基础,它提供了描述和处理高
- 互信息详解
Shockang
机器学习数学通关指南机器学习人工智能数学信息论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文互信息:变量间关联性的量化利器互信息(MutualInformation)是信息论中的核心概念,也是
- Deepseek结合AnythingLLM搭建个人本地智能知识库
曲幽
AI计算机deepseekai大模型ollamaanythingllm本地知识库
之前通过Ollama搭建了本地Deepseek大模型对话机制,但知识点仅限于Deepseek内部的数据,且目前数据截止时间为2024年7月,如果我们询问一些专业性比较强的内容,则Deepseek也显得无能为力,这就需要再给这个大脑外接一些文档数据了,通过AnythingLLM来Embedding外部文档。更多内容,可关注公众号“一名程序媛”,我们一起从0-1学编程1下载安装AnythingLLM有
- 内容中台的核心架构是什么?
清风徐徐de来
其他
模块化架构设计解析内容中台的模块化架构通过分层解耦实现灵活扩展,其核心由基础资源层、能力服务层与业务应用层构成。基础层以统一数据治理体系为支撑,通过标准化接口实现结构化与非结构化数据的统一存储,例如Baklib采用分布式存储架构保障数据安全性与访问效率。服务层整合智能分发引擎与API协同策略,支持动态编排内容处理流程,如自动标签生成与多版本管理。应用层通过可配置化组件对接多终端场景,确保知识库构建
- YAGO是什么?
魔王阿卡纳兹
知识图谱入门大数据治理与分析知识图谱yago实体
YAGO是一个基于链接数据库的开放语义知识库,由德国马普研究所与巴黎电讯科技大学于2007年联合开发,基于CreativeCommonsAttribution协议。其主要特点是从Wikipedia、WordNet和GeoNames等来源提取事实,形成了一个包含丰富语义信息的知识库。YAGO的数据规模庞大,包含约5亿个实体和20亿条事实,这些事实可以在时间和空间上进行锚定。此外,YAGO还具有预定义
- AI提示词(Prompt)的理解和学习指南
时光不负追梦人
人工智能prompt
AI提示词(Prompt)的理解和学习指南一、什么是AI提示词?AI提示词(Prompt)是用户输入给人工智能模型的指令或问题,用于引导模型生成特定类型的回答或内容。它如同与AI沟通的“钥匙”,设计得当的提示词能显著提升输出质量。二、提示词的核心要素明确目标模糊示例:“写一篇关于环保的文章。”优化示例:“以‘垃圾分类’为主题,撰写一篇面向社区居民的科普文章,要求包含实施步骤和常见误区,字数约800
- π0:一种用于通用机器人控制的视觉-语言-动作流模型
强化学习曾小健
人工智能
π0:一种用于通用机器人控制的视觉-语言-动作流模型原创木木JS具身知识库2024年12月06日17:30广西
- 使用DeepSeek整合自有数据构建知识库教程
Logan_Gong
ai知识图谱
使用DeepSeek整合自有数据构建知识库教程在信息爆炸的时代,有效管理和利用自有数据成为提升工作与学习效率的关键。DeepSeek作为一款强大的工具,为我们整合自有数据、构建个性化知识库提供了便利。以下将详细介绍使用DeepSeek搭建专属知识库的多种方案,无论你是新手小白,还是经验丰富的开发者,亦或是企业级用户,都能找到适合自己的方法。一、快速入门方案(推荐新手)工具组合:AnythingLL
- Docker+Ollama+RAGFlow本地部署DeepSeek R1并构建本地知识库
康顺哥
AI大模型#docker容器llama语言模型aiAI编程
目录背景安装Docker设置Docker默认参数修改Docker保存服务程序的缓存路径为服务程序镜像设置别名为ollama设置专用参数安装ollama运行DeepSeekR1大模型安装Open-WebUI配置Open-WebUI检验DeepSeek的资源占用情况安装RAGFlow添加chat模型添加embedding模型创建知识库AI结合知识库聊天总结背景DeepSeek持续火爆,但官网访问经常出
- 【快速入门】本地知识库部署:FastGPT与Dify轻松上手全指南!
大模型老炮
大模型入门大模型人工智能产品经理大模型学习知识库部署AI
本文主要内容本地部署Dify、FastGPT、OllamaDify、FastGPT对接一些目前免费的LLM大语言AI模型Dify、FastGPT对接Ollama本地模型大家好,我是一名喜欢在家折腾本地部署的开发者,这次我来分享如何在本地运行Ollama,并将它与FastGPT和Dify两个知识库对接。看起来复杂,但其实步骤并不难。我会尽量把内容讲得清楚易懂,加上一些幽默,让整个过程更有趣。第一步:
- FreeRTOS第17篇:FreeRTOS链表实现细节05_MiniListItem_t:FreeRTOS内存优化
指尖动听知识库
链表数据结构
文/指尖动听知识库-星愿文章为付费内容,商业行为,禁止私自转载及抄袭,违者必究!!!文章专栏:深入FreeRTOS内核:从原理到实战的嵌入式开发指南1为什么需要迷你列表项?在嵌入式系统中,内存资源极其宝贵。FreeRTOS为满足不同场景需求,设计了标准列表项(ListItem_t)和迷你列表项(MiniListItem_t),后者通过牺牲部分功能换取内存效率的极致优化。1.1标准列表项的局限性内存
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb