安装Tensoflow1.0
Linux/ubuntu:
pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.1-cp27-none-linux_x86_64.whl
pip3 install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.1-cp35-cp35m-linux_x86_64.whl
Maxos:
pip install https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.1-py2-none-any.whl
pip3 install https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.1-py3-none-any.whl
Tensorflow完成加法
import tensorflow as tf
# 消除警告(使用源码安装可自动消除)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
a = tf.constant(3.0)
b = tf.constant(4.0)
with tf.Session() as sess:
a_b = tf.add(a, b)
print("相加后的类型为")
print(a_b)
print("真正的结果为:")
print(sess.run(a_b))
将加法运算以图形化方式展示
import tensorflow as tf
# 消除警告(使用源码安装可自动消除)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
a = tf.constant(3.0)
b = tf.constant(4.0)
with tf.Session() as sess:
a_b = tf.add(a, b)
print("相加后的类型为")
print(a_b)
print("真正的结果为:")
print(sess.run(a_b))
# 添加board记录文件
file_write = tf.summary.FileWriter('/Users/lijianzhao/tensorBoard/', graph=sess.graph)
- 在终端运行
tensorboard --logdir="/Users/lijianzhao/tensorBoard/"
- 根据终端提示,在浏览器键入
http://192.168.199.213:6006
实现简单的线性回归
import tensorflow as tf
# 消除警告(使用源码安装可自动消除)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 回归函数
def my_regression():
# 准备10000 条数据x的平均值为5.0 标准差为1.0
x = tf.random_normal([100, 1], mean = 5.0, stddev=1.0, name="x")
# 真实的关系为 y = 0.7x + 0.6
y_true = tf.matmul(x, [[0.7]]) + 0.6
# 创建权重变量
weight = tf.Variable(tf.random_normal([1, 1], mean=1.0, stddev=0.1), name="weight")
# 创建偏置变量,初始值为1
bias = tf.Variable(1.0, name="bias")
# 预测结果
y_predict = tf.matmul(x, weight) + bias
# 计算损失
loss = tf.reduce_mean(tf.square(y_predict - y_true))
# 梯度下降减少损失,每次的学习率为0.1
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
# 收集变量
tf.summary.scalar("losses", loss)
tf.summary.histogram("weightes", weight)
# 合并变量
merged = tf.summary.merge_all()
# 初始化变量
init_op = tf.global_variables_initializer()
# 梯度下降优化损失
with tf.Session() as sess:
sess.run(init_op)
print("初始的权重为{}, 初始的偏置为{}".format(weight.eval(), bias.eval()))
# 添加board记录文件
file_write = tf.summary.FileWriter('/Users/lijianzhao/tensorBoard/my_regression', graph=sess.graph)
# 循环训练线性回归模型
for i in range(20000):
sess.run(train_op)
print("训练第{}次的权重为{}, 偏置为{}".format(i,weight.eval(), bias.eval()))
# 观察每次值的变化
# 运行merge
summery = sess.run(merged)
# 每次收集到的值添加到文件中
file_write.add_summary(summery, i)
if __name__ == '__main__':
my_regression()
为程序添加作用域
import tensorflow as tf
# 消除警告(使用源码安装可自动消除)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 回归函数
def my_regression():
# 准备数据
with tf.variable_scope("data"):
# 准备10000 条数据x的平均值为5.0 标准差为1.0
x = tf.random_normal([100, 1], mean = 5.0, stddev=1.0, name="x")
# 真实的关系为 y = 0.7x + 0.6
y_true = tf.matmul(x, [[0.7]]) + 0.6
# 创建模型
with tf.variable_scope ("model"):
# 创建权重变量
weight = tf.Variable(tf.random_normal([1, 1], mean=1.0, stddev=0.1), name="weight")
# 创建偏置变量,初始值为1
bias = tf.Variable(1.0, name="bias")
# 预测结果
y_predict = tf.matmul(x, weight) + bias
# 计算损失
with tf.variable_scope ("loss"):
# 计算损失
loss = tf.reduce_mean(tf.square(y_predict - y_true))
# 减少损失
with tf.variable_scope("optimizer"):
# 梯度下降减少损失,每次的学习率为0.1
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
# 收集变量
tf.summary.scalar("losses", loss)
tf.summary.histogram("weightes", weight)
# 合并变量
merged = tf.summary.merge_all()
# 初始化变量
init_op = tf.global_variables_initializer()
# 梯度下降优化损失
with tf.Session() as sess:
sess.run(init_op)
print("初始的权重为{}, 初始的偏置为{}".format(weight.eval(), bias.eval()))
# 添加board记录文件
file_write = tf.summary.FileWriter('/Users/lijianzhao/tensorBoard/my_regression', graph=sess.graph)
# 循环训练线性回归模型
for i in range(20000):
sess.run(train_op)
print("训练第{}次的权重为{}, 偏置为{}".format(i,weight.eval(), bias.eval()))
# 观察每次值的变化
# 运行merge
summery = sess.run(merged)
# 每次收集到的值添加到文件中
file_write.add_summary(summery, i)
if __name__ == '__main__':
my_regression()
模型的保存与恢复(保存会话资源)
saver = tf.train.Saver()
saver.save(sess, "./tmp/ckpt/test")
save.restore(sess, "./tmp/ckpt/test")