- Three.js 实现导出模型文件(.glb,.gltf)功能 GLTFExporter
Three.js提供了导出(.glb,.gltf)文件的APIGLTFExporter用于实现场景内容导出模型文件的功能导出模型文件主要使用parse方法,该方法接收三个参数:1.scene:要导出的场景对象。2.onComplete:解析完成后的回调函数,接收一个参数result,表示解析后的glTF数据。3.options:可选参数,用于配置导出的选项。下面是options的一些常用参数选项:
- 青少年编程与数学 02-022 专业应用软件简介 24 项目管理工具:Trello
青少年编程与数学02-022专业应用软件简介24项目管理工具:Trello引言一、Trello的发展背景与历程1.1创立初衷1.2被Atlassian收购二、Trello的核心功能与特性2.1看板式任务管理(KanbanBoard)2.2卡片内容丰富性2.3自动化与规则引擎(Butler)2.4团队协作与权限管理三、Trello的应用场景与行业应用3.1软件开发与敏捷项目管理3.2市场营销与内容策
- Python通关秘籍之基础教程(一)
Smile丶Life丶
Python通关指南:从零基础到高手之路python开发语言后端
引言在编程的世界里,Python就像一位温和而强大的导师,它以简洁优雅的语法和强大的功能吸引着无数初学者和专业人士。无论你是想开发网站、分析数据、构建人工智能,还是仅仅想学习编程思维,Python都是你的理想选择。Python的魅力在于它的易读性和广泛的应用场景。它的代码就像英语句子一样自然,即使是完全没有编程经验的人也能快速上手。同时,Python拥有庞大的生态系统,从Web开发(Django、
- 如果让计算机理解人类语言- One-hot 编码(One-hot Encoding,1950s)
如果让计算机理解人类语言-One-hot编码(One-hotEncoding,1950s)flyfish如果让计算机理解人类语言-One-hot编码(One-hotEncoding,1950s)如果让计算机理解人类语言-词袋模型(BagofWords,BoW,1970s)如果让计算机理解人类语言-Word2Vec(WordtoVector,2013)如果让计算机理解人类语言-Qwen3Embedd
- 探秘阿里云消息队列:解锁分布式系统的异步通信奥秘
云资源服务商
阿里云云计算中间件
阿里云消息队列:分布式架构的基石在当今数字化快速发展的时代,分布式系统已成为企业构建高可用、高性能应用的关键架构。而消息队列,作为分布式系统中的重要组件,犹如基石一般,支撑着整个架构的稳定运行。它能够有效地解决分布式系统中的异步通信、解耦、削峰填谷等问题,为系统的可靠性和扩展性提供了强大的保障。阿里云作为云计算领域的领军者,其推出的阿里云消息队列凭借着卓越的性能、高可靠性以及丰富的功能,成为了众多
- Python协程从入门到精通:9个案例解析yield、gevent与asyncio实战
python_chai
Pythonpython开发语言协程并发yield生成器gerrnletgevent
引言痛点分析:传统多线程在高并发场景下的性能瓶颈。协程优势:轻量级、高并发、低资源消耗。本文目标:通过9个代码案例,系统讲解协程的核心技术和应用场景。目录引言1.协程基础:理解yield生成器1.1yield的暂停与恢复机制1.2生产者-消费者模型实战1.3双向通信:send()方法详解2.手动协程控制:greenlet进阶2.1greenlet的显式切换原理2.2多任务协作案例3.自动化协程:g
- 多模态大模型发展全景:从架构创新到应用突破
陈敬雷-充电了么-CEO兼CTO
python大模型多模态大模型AIGC机器学习深度学习DeepSeek
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】《GPT多模态大模型与AIAgent智能体》新出书籍配套视频【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录GPT多模态大模型系列四多模态大模型发展全景:从架构创新到应用突破更多技术内容总结GPT多模态大模型系列四多模态大模型
- 大模型中标斩获3项第一!
百度智能云
今年1-4月,百度智能云在主流大模型厂商中一举拿下三项第一!数量最多!中标项目数量7个!行业最全!覆盖最多行业6个!金额最高!中标金额总数最高5600万+南方电网、泰康保险、北京车网、中华总工会、上海城投污水处理有限公司等行业头部客户,纷纷与百度智能云达成合作,体现出大模型技术在政策、市场的双轮驱动下的强劲增长态势。百度智能云将继续深化与行业客户合作,共同探索大模型技术在各行业的应用场景,推动行业
- Three.js引擎开发:Three.js动画系统实现_(9).Three.js中的骨骼动画实现
chenlz2007
游戏开发javascriptnginx开发语言vr性能优化ecmascript前端
Three.js中的骨骼动画实现在上一节中,我们介绍了如何在Three.js中加载和显示3D模型。接下来,我们将深入探讨如何在Three.js中实现骨骼动画。骨骼动画是一种高级的动画技术,它通过控制模型的骨骼来驱动模型的动画,广泛应用于虚拟角色的动画制作。在本节中,我们将学习如何在Three.js中实现骨骼动画,包括骨骼动画的基本原理、如何加载带有骨骼的模型、如何创建和控制动画混合器(Animat
- 百度斩获大模型中标第一,股价上涨5%
大力财经
百度
7月7日(周一),百度(BIDU.US)股价上涨5%,收报90.68美元。最新数据显示,2025上半年我国大模型相关项目呈现爆发式增长态势:中标项目累计达1810个,金额突破64亿元,中标项目数超2024全年,市场需求持续释放。其中,百度智能云表现尤为突出,以48个中标项目和5.1亿元中标金额,稳居“双第一”,并在金融、能源、政务、制造等重点行业中持续领跑。依托领先的大模型技术与全栈智能基础设施,
- 深入解析:v0、Cursor、Manus等AI编程助手的系统提示词、工具与模型
张道宁
人工智能
引言在当今快速发展的AI编程领域,涌现出了许多强大的AI编程助手工具,如v0、Cursor、Manus、Same.dev、Lovable、Devin和ReplitAgent等。这些工具通过智能化的代码生成、补全和优化,正在彻底改变开发者的工作流程。v0:Vercel的AIUI生成器系统提示词设计v0的系统提示词专注于将自然语言描述转换为可用的UI代码(主要是React和TailwindCSS)。其
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 量子传感探针:金刚石NV色心实现细胞级磁弹性成像(分辨率10nm)技术解析
百态老人
人工智能
一、技术原理与核心突破金刚石氮-空位色心(NV色心)作为原子级量子传感器,其磁弹性成像能力源于电子自旋态与环境磁场的量子相干相互作用,结合纳米探针技术实现细胞级分辨率。核心技术原理包括:1.NV色心量子传感机制磁弹性耦合模型:NV色心的自旋哈密顿量可表示为:H=DSz2+γeB⋅S+λϵ⋅SH=DS_z^2+\gamma_e\mathbf{B}\cdot\mathbf{S}+\lambda\mat
- MiniMind:3小时训练26MB微型语言模型,开源项目助力AI初学者快速入门
nine是个工程师
关注人工智能语言模型开源
开发|界面|引擎|交付|副驾——重写全栈法则:AI原生的倍速造应用流来自全栈程序员nine的探索与实践,持续迭代中。欢迎关注评论私信交流~在大型语言模型(LLaMA、GPT等)日益流行的今天,一个名为MiniMind的开源项目正在AI学习圈内引起广泛关注。这个项目让初学者能够在3小时内从零开始训练出一个仅26.88MB大小的微型语言模型,体积仅为GPT-3的七千分之一,却完整覆盖了从数据处理到模型
- 如何让AI真正理解你的意图(自适应Prompt实战指南)
nine是个工程师
大语言模型人工智能prompt
目前的LLM模型,在理解用户意图方面,正在使用自适应Prompt技术,来提升模型的理解能力。目前使用deepseek推理模型能明显看到自适应的一个过程。前言:为什么你的AI总是"答非所问"?相信很多人都遇到过这样的情况:你问:“帮我写一个Python爬虫”AI答:给你一堆理论知识和完整教程(你只想要简单代码)你问:“推荐一部电影”AI答:推荐了《教父》(你想看轻松喜剧)你问:“解释一下机器学习”A
- 上下文工程:AI 智能体架构落地的关键新技术
一休哥助手
人工智能人工智能架构
摘要随着大语言模型(LLM)驱动的智能体(Agent)逐渐成为下一代人机交互的核心范式,上下文管理已成为决定智能体性能与可靠性的关键瓶颈。本文提出“上下文工程”(ContextEngineering)作为智能体架构落地的核心技术方向,系统阐述其在解决长上下文依赖、多轮交互一致性、动态知识更新等挑战中的核心作用。通过分层架构设计、动态压缩策略与向量化增强技术,上下文工程显著提升智能体的记忆效率与推理
- MCP在AI驱动场景下的三个典型应用(实时数据查询、企业数据整合、自动化工具链)
CATTLECODE
人工智能自动化运维
以下是针对MCP在AI驱动场景下的三个典型应用(实时数据查询、企业数据整合、自动化工具链)的具体Demo实现方案及技术解析,结合真实案例和代码示例说明:️1.实时数据查询:调用气象API返回天气数据场景描述用户通过自然语言提问(如“北京今天天气如何?”),大模型自动调用气象API获取实时数据,无需手动输入或切换界面。Demo实现(基于FastMCP框架)fromfastmcpimportFastM
- 跨机构医疗影像解析的协议协同架构——基于MCP协议的“巴比伦塔困境“突破
百态老人
架构
在医疗影像领域,不同医疗机构间因系统异构性形成的"巴比伦塔困境",本质上是协议标准碎片化与数据语义隔阂的叠加效应。通过融合MCP协议、DICOM标准扩展与新型云架构,协和医院PACS系统与301医院AI模型间的直接解析得以实现。这一技术突破包含以下核心创新层级:一、协议转换层的架构创新1.多协议语义网关基于MCP协议构建的智能协议转换层,实现不同DICOM实现版本的动态适配:
- Cursor这类编程Agent软件的模型架构与工作流程
nine是个工程师
谈谈架构Agent架构
开发|界面|引擎|交付|副驾——重写全栈法则:AI原生的倍速造应用流来自全栈程序员nine的探索与实践,持续迭代中。欢迎评论私信交流。最近在关注和输出一系列AIGC架构。模型架构与工作流程大语言模型(LLM)核心编程Agent的核心是一个强大的大语言模型,负责理解用户意图并生成相应的代码和解决方案。Cursor这类编程Agent通常基于GPT-4或Claude等先进大语言模型构建。这些模型通过海量
- 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
寻道AI小兵
AI大模型-前沿技术追踪人工智能音视频开源AIGC语言模型
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破4【AI大模型前沿】阿里QwQ-32B:320亿参数推理大模型,性能比肩DeepSeek-R1,免费开源5【AI大模型前沿】TRELLI
- ollama v0.9.6版本发布详解:修复启动屏幕样式及新增工具名称参数支持
福大大架构师每日一题
文心一言vschatgptollama
作为近年来备受瞩目的开源对话式人工智能框架之一,ollama持续更新优化其产品,致力于为开发者带来更稳定、高效的使用体验。2025年7月8日,ollama发布了v0.9.6版本,这一版本在用户界面和API的可用性方面做出了重要改进,进一步增强了开发和集成的便捷性。本文将对ollamav0.9.6版本的更新内容进行全面解析,详细介绍新特性、修复的具体问题、应用示例及最佳实践,帮助开发者快速掌握和应用
- 缺乏项目进度可视化手段,如何提升展示效果
要提升项目进度的展示效果,需聚焦于选择合适的可视化工具、构建标准化的展示模板、结合数据进行动态更新、明确受众与场景匹配展示内容、推动进度展示与管理系统集成。其中,选择合适的可视化工具最为关键。项目展示效果的好坏,很大程度上取决于所使用工具的表达能力与交互性。选择具备图表支持、实时协作、数据集成能力的工具(如PowerBI、JiraDashboard、ClickUp等),能显著提升项目可视化水平和数
- 深入解读 Qwen3 技术报告(一):引言
小爷毛毛(卓寿杰)
大模型AIGC深度学习基础/原理人工智能自然语言处理python语言模型深度学习
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展1.引言:迎接大型语言模型的新纪元我们正处在一个由人工智能(AI
- 青少年编程与数学 02-022 专业应用软件简介 22 电子签名和合同管理平台:法大大
明月看潮生
编程与数学第02阶段青少年编程应用软件编程与数学电子签名合同管理
青少年编程与数学02-022专业应用软件简介22电子签名和合同管理平台:法大大引言一、法大大的背景与发展历程1.1公司概述1.2发展历程二、产品功能详解2.1核心功能介绍2.2特色功能展示三、应用场景案例分析3.1行业应用实例3.2成功案例分享四、技术安全保障措施4.1数据加密技术4.2风险控制体系4.3合规性审查五、市场地位与未来展望5.1市场份额与影响力5.2未来发展计划摘要:法大大是中国领先
- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- 百度地图迁徙大数据深度解析与实战指南
百度地图迁徙大数据深度解析与实战指南在数字化时代,人口流动数据已成为洞察社会经济活动的关键指标。百度地图依托海量位置数据和AI算法打造的"迁徙大数据"平台,为城市规划、交通管理、商业选址等领域提供了重要决策支持。本文将系统性解析百度地图迁徙大数据的查看方法、核心功能及实战应用场景,帮助读者快速掌握这一数据驱动的决策工具。一、迁徙大数据的核心价值迁徙大数据通过聚合手机用户的定位信息,构建全国范围的人
- 百度搜索下拉框,下拉菜单怎么做?如何刷?
mt_187
日常记录技术收藏html5
搜索下拉菜单反馈性关键词是用户在搜索时与搜索引擎的第一步互动,在互动过程中,搜索引擎的反馈关键词不断调整来满足用户的个性需求。搜索下拉框存在的下拉词,每天的点击浏览量都很高,这意味着很多企业都在抢这个位置,在网民搜索自己的行业主关键词时,下拉中的词条是行业关键词和自己品牌词或其他营销类词的整体呈现。搜索下拉框菜单怎么做?如何刷?在本篇文章中您将会了解到以下信息。第一部分搜索下拉框菜单原理第二部分怎
- Agentic AI与Gen AI区别
500佰
技术资讯NodeJS人工智能
AgenticAI上班族的摸鱼神器我最近一年都在用AI,非但没有感觉AI成了我的助理,却感觉我好像再给AI打工。因为我总是需要不断去喂提示词,要不断调整模型的输出,我就像一个保姆一样要守在ChatGPT旁边,其实此时此刻,人类点亮的科技树,已经够我们用AI去自动化60%-70%的工作时长了,但这个实际进度还在个位数,ni知道问题所在吗。这问题在于,我们还处在generatedAI的阶段,我们和AI
- 《论三生原理》如何与量子计算对话?
葫三生
三生学派量子计算
AI辅助创作:《论三生原理》与量子计算的对话体现为哲学思想、数学工具与物理机制的三重耦合,其核心关联如下:一、哲学基础的重构性映射动态生成论与量子叠加的对应将《道德经》“三生万物”的生成逻辑映射为量子态演化模型:“道生一”对应量子真空涨落(虚粒子对涌现),“二生三”类比纠缠光子对的自旋关联态,“三生万物”诠释量子比特叠加态的指数级演化空间。量子纠缠中“整体性优先个体”的特性与三生原理“关系先
- 大模型之Spring AI实战系列(三十二):Spring Boot + DeepSeek 实战指南:工具函数(Function Call)实战应用
系列篇章No.文章1大模型之SpringAI实战系列(一):基础认知篇-开启智能应用开发之旅2大模型之SpringAI实战系列(二):SpringBoot+OpenAI打造聊天应用全攻略3大模型之SpringAI实战系列(三):SpringBoot+OpenAI实现聊天应用上下文记忆功能4大模型之SpringAI实战系列(四):SpringBoot+OpenAI使用OpenAIEmbedding实
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比