自然语言处理N天-实现Transformer整合各个module

自然语言处理N天-实现Transformer整合各个module_第1张图片
新建 Microsoft PowerPoint 演示文稿 (2).jpg

这个算是在课程学习之外的探索,不过希望能尽快用到项目实践中。在文章里会引用较多的博客,文末会进行reference。
搜索Transformer机制,会发现高分结果基本上都源于一篇论文Jay Alammar的《The Illustrated Transformer》(图解Transformer),提到最多的Attention是Google的《Attention Is All You Need》。
-~~对于Transformer的运行机制了解即可,所以会基于这篇论文来学习Transformer,结合《Sklearn+Tensorflow》中Attention注意力机制一章完成基本的概念学习;

  • 找一个基于Transformer的项目练手

5.代码实现

整合各个module

在之前的modules中,已经完成了一个Transformer网络各个组件的编写,在这里要将不同组件进行整合。
我不知道这个代码的质量,还是先搞定,再看Google的原版,以及使用Pytorch的实现。
主要包括四个方法,对应Transformer的Encoder和Decoder结构以及训练和评价。

  • def encode(self, xs, training=True)
  • def decode(self, ys, memory, training=True)
  • def train(self, xs, ys)
  • def eval(self, xs, ys)
引入必要库
import tensorflow as tf

from data_load import load_vocab
from modules import get_token_embeddings, ff, positional_encoding, multihead_attention, label_smoothing, noam_scheme
from utils import convert_idx_to_token_tensor
from tqdm import tqdm
import logging

logging.basicConfig(level=logging.INFO)
构建类
class Transformer:
    '''
    xs: tuple of
        x: int32 tensor. (N, T1)
        x_seqlens: int32 tensor. (N,)
        sents1: str tensor. (N,)
    ys: tuple of
        decoder_input: int32 tensor. (N, T2)
        y: int32 tensor. (N, T2)
        y_seqlen: int32 tensor. (N, )
        sents2: str tensor. (N,)
    training: boolean.
    '''

    def __init__(self, hp):
        self.hp = hp
        self.token2idx, self.idx2token = load_vocab(hp.vocab)
        self.embeddings = get_token_embeddings(self.hp.vocab_size, self.hp.d_model, zero_pad=True)

    def encode(self, xs, training=True):
        '''
        encoder部分,注意看里面的实现过程,
        :param xs: 
        :param training: 
        :return: encoder outputs. (N, T1, d_model)
        '''

    def decode(self, ys, memory, training=True):
        '''
        decoder部分,注意看里面的实现过程
        
        :param ys: 
        :param memory: 就是encoder的输出。
        :param training: 
        :return: 
        '''

    def train(self, xs, ys):
        '''
        训练部分
        :param xs: 
        :param ys: 
        :return: 
        '''

    def eval(self, xs, ys):
        '''
        回归预测,推理中忽略输入
        :param xs: 
        :param ys: 
        :return: 
        '''
构建encoder

注意实现过程,对比和后面decoder的区别

def encode(self, xs, training=True):
    '''
    encoder部分,注意看里面的实现过程,
    :param xs: 
    :param training: 
    :return: encoder outputs. (N, T1, d_model)
    '''
    with tf.Variable_scope("encoder", reuse=tf.AUTO_REUSE):
        x, seqlens, sents1 = xs
        # 嵌入 enc意思为encoder
        enc = tf.nn.embedding_lookup(self.embeddings, x)
        enc *= self.hp.d_model ** 0.5
        enc += positional_encoding(enc, self.hp.maxlen1)
        enc = tf.layers.dropout(enc, self.hp.dropout_rate, training=training)

        # blocks
        for i in range(self.hp.num_blocks):
            with tf.variable_scope("num_blocks_{}".format(i), reuse=tf.AUTO_REUSE):
                # self-attention
                enc = multihead_attention(
                    queries=enc,
                    keys=enc,
                    values=enc,
                    num_heads=self.hp.num_heads,
                    dropout_rate=self.hp.dropout_rate,
                    training=training,
                    causality=False
                )
                # 前向传播
                enc = ff(enc, num_units=[self.hp.d_ff, self.hp.d_model])
    memory = enc
    return memory, sents1
构建decoder
def decode(self, ys, memory, training=True):
    '''
    decoder部分,注意看里面的实现过程

    :param ys: 
    :param memory: 就是encoder的输出。
    :param training: 
    :return: 
    '''
    with tf.variable_scope("decoder", reuse=tf.AUTO_REUSE):
        decoder_inputs, y, seqlens, sents2 = ys

        # 嵌入
        dec = tf.nn.embedding_lookup(self.embeddings, decoder_inputs)

        dec *= self.hp.d_model ** 0.5
        dec += positional_encoding(dec, self.hp.maxlen2)
        dec = tf.layers.dropout(dec, self.hp.dropout_rate, training=training)

        # blocks
        for i in range(self.hp.num_blocks):
            with tf.variable_scope("num_blocks_{}".format(i), reuse=tf.AUTO_REUSE):
                # Masked self-attention (Note that causality is True at this time)
                dec = multihead_attention(
                    queries=dec,
                    keys=dec,
                    values=dec,
                    num_heads=self.hp.num_heads,
                    dropout_rate=self.hp.dropout_rate,
                    training=training,
                    causality=True,
                    scope="self_attention"
                )
                # vanilla attention
                dec = multihead_attention(
                    queries=dec,
                    keys=memory,
                    values=memory,
                    num_heads=self.hp.num_heads,
                    dropout_rate=self.hp.dropout_rate,
                    training=training,
                    causality=False,
                    scope="vanilla_attention"
                )
                # 前向传播
                dec = ff(dec, num_units=[self.hp.d_ff, self.hp.d_model])
    # 最后的线性投影(嵌入权重)
    weights = tf.transpose(self.embeddings)
    logits = tf.einsum('ntd,dk->ntk', dec, weights)
    y_hat = tf.to_int32(tf.argmax(logits, axis=-1))

    return logits, y_hat, y, sents2
构建训练和评价方法
def train(self, xs, ys):
    '''
    训练部分
    :param xs: 
    :param ys: 
    :return: 
    '''
    memory, sents1 = self.encode(xs)
    logits, preds, y, sents2 = self.decode(ys, memory)

    y_ = label_smoothing(tf.one_hot(y, depth=self.hp.vocab_size))
    ce = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=y_)
    nonpadding = tf.to_float(tf.not_equal(y, self.token2idx[""]))  # 0: 
    loss = tf.reduce_sum(ce * nonpadding) / (tf.reduce_sum(nonpadding) + 1e-7)

    global_step = tf.train.get_or_create_global_step()
    lr = noam_scheme(self.hp.lr, global_step, self.hp.warmup_steps)
    optimizer = tf.train.AdamOptimizer(lr)
    train_op = optimizer.minimize(loss, global_step=global_step)

    tf.summary.scalar('lr', lr)
    tf.summary.scalar("loss", loss)
    tf.summary.scalar("global_step", global_step)

    summaries = tf.summary.merge_all()

    return loss, train_op, global_step, summaries

def eval(self, xs, ys):
    '''
    回归预测,推理中忽略输入
    :param xs: 
    :param ys: 
    :return: 
    '''
    decoder_inputs, y, y_seqlen, sents2 = ys

    decoder_inputs = tf.ones((tf.shape(xs[0])[0], 1), tf.int32) * self.token2idx[""]
    ys = (decoder_inputs, y, y_seqlen, sents2)

    memory, sents1 = self.encode(xs, False)

    logging.info("Inference graph is being built. Please be patient.")
    for _ in tqdm(range(self.hp.maxlen2)):
        logits, y_hat, y, sents2 = self.decode(ys, memory, False)
        if tf.reduce_sum(y_hat, 1) == self.token2idx[""]: break

        _decoder_inputs = tf.concat((decoder_inputs, y_hat), 1)
        ys = (_decoder_inputs, y, y_seqlen, sents2)

    # monitor a random sample
    n = tf.random_uniform((), 0, tf.shape(y_hat)[0] - 1, tf.int32)
    sent1 = sents1[n]
    pred = convert_idx_to_token_tensor(y_hat[n], self.idx2token)
    sent2 = sents2[n]

    tf.summary.text("sent1", sent1)
    tf.summary.text("pred", pred)
    tf.summary.text("sent2", sent2)
    summaries = tf.summary.merge_all()

    return y_hat, summaries

到此为止,整个Transformer就搭建完毕,接下来要做的就是训练和调试。我在想要不要花一天时间训练,还是找一个更成熟的demo来做。
接下来要安装Pytorch,因为AllenNLP已经做好了这些。

你可能感兴趣的:(自然语言处理N天-实现Transformer整合各个module)