Kafka 架构:
以下是一般 Kafka 的架构
多节点多Broker集群
术语
- Broker
Kafka集群包含一个或多个服务器,这种服务器被称为broker,可以水平扩展,一般broker数量越多,集群吞吐率越高,而且kafka 每个节点可以有多个 broker - Producer
负责发布消息到Kafka broker,可以是web前端产生的page view,或者是服务器日志,系统CPU、memory等 - Consumer
消费消息。每个consumer属于一个特定的consumer group(可为每个consumer指定group name,若不指定group name则属于默认的group)。使用consumer high level API时,同一topic的一条消息只能被同一个consumer group内的一个consumer消费,但多个consumer group可同时消费这一消息。 - Zookeeper
通过Zookeeper管理集群配置,选举leader,以及在consumer group发生变化时进行rebalance - Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为topic。(物理上不同topic的消息分开存储,逻辑上一个topic的消息虽然保存于一个或多个broker上但用户只需指定消息的topic即可生产或消费数据而不必关心数据存于何处) - Partition
parition是物理上的概念,每个topic包含一个或多个partition,创建topic时可指定parition数量。每个partition对应于一个文件夹,该文件夹下存储该partition的数据和索引文件 - Segment
partition物理上由多个segment组成,每一个segment 数据文件都有一个索引文件对应 - Offset
每个partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到partition中。partition中的每个消息都有一个连续的序列号叫做offset,用于partition唯一标识一条消息.
Push vs. Pull
push模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。push模式的目标是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据consumer的消费能力以适当的速率消费消息。
所以我们一般在 Kafka 前面再加一个 Log Server,可以用 LevelDB 缓存,作为一个缓冲,提高峰值处理能力
Topic & Partition
每条消费都必须指定它的topic,为了使得Kafka的吞吐率可以水平扩展,物理上把topic分成一个或多个partition,每个partition在物理上对应一个文件夹,该文件夹下存储这个partition的所有消息和索引文件。
topic中partition存储分布
假设实验环境中Kafka集群只有一个broker,xxx/message-folder为数据文件存储根目录,在Kafka broker中server.properties文件配置(参数log.dirs=xxx/message-folder),例如创建2个topic名称分别为report_push、launch_info, partitions数量都为partitions=4
存储路径和目录规则为:
xxx/message-folder
|--report_push-0
|--report_push-1
|--report_push-2
|--report_push-3
|--launch_info-0
|--launch_info-1
|--launch_info-2
|--launch_info-3
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。如果是多broker分布情况,请参考kafka集群partition分布原理分析
partiton中文件存储方式
下面示意图形象说明了partition中文件存储方式:
每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。
每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。
这样做的好处就是能快速删除无用文件,有效提高磁盘利用率。
segment文件存储结构
segment file由2大部分组成,分别为index file和data file,此两个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件.
segment文件命名规则:
partion全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。
下面文件列表是笔者在Kafka broker上做的一个实验,创建一个topicXXX包含1 partition(方便观察大小变化),设置每个segment大小为500MB,并启动producer向Kafka broker写入大量数据,如下图所示segment文件列表形象说明了上述2个规则:
以上述图中一对segment file文件为例,说明segment中
index<—->data file 对应关系物理结构如下:
上述图中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。其中以索引文件中元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message)、以及该消息的物理偏移地址为497。
从上述图了解到segment data file由许多message组成,下面详细说明message物理结构如下:
在partition中如何通过offset查找message
例如读取offset=368776的message,需要通过下面2个步骤查找:
- 查找segment file
上述图2为例,其中00000000000000000000.index表示最开始的文件,起始偏移量(offset)为0.第二个文件00000000000000368769.index的消息量起始偏移量为368770 = 368769 + 1.同样,第三个文件00000000000000737337.index的起始偏移量为737338=737337 + 1,其他后续文件依次类推,以起始偏移量命名并排序这些文件,只要根据offset 二分查找文件列表,就可以快速定位具体文件到
00000000000000368769.index|log - 通过segment file查找message
通过第一步定位到segment file,当offset=368776时,依次定位到00000000000000368769.index的元数据物理位置(368776-368769=7),实际上找到了 第6条消息 进而得到
00000000000000368769.log的物理偏移地址,然后再通过 .log 文件的物理偏移地址,去 .log 文件顺序读取对应message
从上述图可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过 mmap 可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间
Kafka运行时很少有大量读磁盘的操作,主要是定期批量写磁盘操作,因此操作磁盘很高效。这跟Kafka文件存储中读写message的设计是息息相关的。Kafka中读写message有如下特点:
写message
- 消息从java堆转入page cache(即物理内存)。
- 由异步线程刷盘,消息从page cache刷入磁盘。
读message - 消息直接从page cache转入socket发送出去。
- 当从page cache没有找到相应数据时,此时会产生磁盘IO,从磁盘Load消息到page cache,然后直接从socket发出去
message 被分配到 partition 的过程
每一条消息被发送到broker时,会根据paritition规则(有两种基本的策略,一是采用Key Hash算法,一是采用Round Robin算法)选择被存储到哪一个partition。如果partition规则设置的合理,所有消息可以均匀分布到不同的partition里,这样就实现了水平扩展。(如果一个topic对应一个文件,那这个文件所在的机器I/O将会成为这个topic的性能瓶颈,而partition解决了这个问题)。在创建topic时可以在$KAFKA_HOME/config/server.properties中指定这个partition的数量(如下所示),当然也可以在topic创建之后去修改parition数量。
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=3
在发送一条消息时,可以指定这条消息的key,producer根据这个key和partition机制来判断将这条消息发送到哪个parition。paritition机制可以通过指定producer的paritition. class这一参数来指定,该class必须实现kafka.producer.Partitioner
接口。本例中如果key可以被解析为整数则将对应的整数与partition总数取余,该消息会被发送到该数对应的partition。(每个parition都会有个序号)
import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties;
public class JasonPartitioner implements Partitioner {
public JasonPartitioner(VerifiableProperties verifiableProperties) {}
@Override
public int partition(Object key, int numPartitions) {
try {
int partitionNum = Integer.parseInt((String) key);
return Math.abs(Integer.parseInt((String) key) % numPartitions);
} catch (Exception e) {
return Math.abs(key.hashCode() % numPartitions);
}
}
}
如果将上例中的class作为partitioner.class,并通过如下代码发送20条消息(key分别为0,1,2,3)至topic2(包含4个partition)。
public void sendMessage() throws InterruptedException{
for(int i = 1; i <= 5; i++){
List messageList = new ArrayList>();
for(int j = 0; j < 4; j++){
messageList.add(new KeyedMessage("topic2", j+"", "The " + i + " message for key " + j));
}
producer.send(messageList);
}
producer.close();
}
则key相同的消息会被发送并存储到同一个partition里,而且key的序号正好和partition序号相同。(partition序号从0开始,本例中的key也正好从0开始)。如下图所示。
message 删除策略
Kafka集群会保留所有的消息,无论其被消费与否。当然,因为磁盘限制,不可能永久保留所有数据(实际上也没必要),因此Kafka提供两种策略去删除旧数据。一是基于时间,二是基于partition文件大小。例如可以通过配置$KAFKA_HOME/config/server.properties,让Kafka删除一周前的数据,也可通过配置让Kafka在partition文件超过1GB时删除旧数据
这里要注意,因为Kafka读取特定消息的时间复杂度为O(1),即与文件大小无关,所以这里删除文件与Kafka性能无关,选择怎样的删除策略只与磁盘以及具体的需求有关。另外,Kafka会为每一个consumer group保留一些metadata信息–当前消费的消息的position,也即offset。这个offset由consumer控制。正常情况下consumer会在消费完一条消息后线性增加这个offset。当然,consumer也可将offset设成一个较小的值,重新消费一些消息。因为offet由consumer控制,所以Kafka broker是无状态的,它不需要标记哪些消息被哪些consumer过,不需要通过broker去保证同一个consumer group只有一个consumer能消费某一条消息,因此也就不需要锁机制,这也为Kafka的高吞吐率提供了有力保障。
Replication
Replication与leader election配合提供了自动的failover机制。replication对Kafka的吞吐率是有一定影响的,但极大的增强了可用性。默认情况下,Kafka的replication数量为1。
每个partition都有一个唯一的leader,所有的读写操作都在leader上完成,follower批量从leader上pull数据。一般情况下partition的数量大于等于broker的数量,并且所有partition的leader均匀分布在broker上。follower上的日志和其leader上的完全一样。
和大部分分布式系统一样,Kakfa处理失败需要明确定义一个broker是否alive。对于Kafka而言,Kafka存活包含两个条件,一是它必须维护与Zookeeper的session(这个通过Zookeeper的heartbeat机制来实现)。二是follower必须能够及时将leader的writing复制过来,不能“落后太多”。
leader会track“in sync”的node list。如果一个follower宕机,或者落后太多,leader将把它从”in sync” list中移除。这里所描述的“落后太多”指follower复制的消息落后于leader后的条数超过预定值,该值可在$KAFKA_HOME/config/server.properties中配置
#If a replica falls more than this many messages behind the leader, the leader will remove the follower from ISR and treat it as dead
replica.lag.max.messages=4000
#If a follower hasn't sent any fetch requests for this window of time, the leader will remove the follower from ISR (in-sync replicas) and treat it as dead
replica.lag.time.max.ms=10000
从 producer 的角度, 发的数据是否会丢?
需要说明的是,Kafka只解决”fail/recover”,不处理“Byzantine”(“拜占庭”)问题。
一条消息只有被“in sync” list里的所有follower都从leader复制过去才会被认为已commit。这样就避免了部分数据被写进了leader,还没来得及被任何follower复制就宕机了,而造成数据丢失(consumer无法消费这些数据)。而对于producer而言,它可以选择是否等待消息commit,这可以通过request.required.acks来设置。这种机制确保了只要“in sync” list有一个或以上的flollower,一条被commit的消息就不会丢失:
- acks = 0,发就发了,不需要 ack,无论成功与否 ;
- acks = 1,当写 leader replica 成功后就返回,其他的 replica 都是通过fetcher去异步更新的,当然这样会有数据丢失的风险,如果leader的数据没有来得及同步,leader挂了,那么会丢失数据;
- acks = –1, 要等待所有的replicas都成功后,才能返回;这种纯同步写的延迟会比较高。
所以,一般的情况下,thoughput 优先,设成1,在极端情况下,是有可能丢失数据的; 如果可以接受较长的写延迟,可以选择将 acks 设为 –1。
这里的复制机制即不是同步复制,也不是单纯的异步复制。事实上,同步复制要求“活着的”follower都复制完,这条消息才会被认为commit,这种复制方式极大的影响了吞吐率(高吞吐率是Kafka非常重要的一个特性)。而异步复制方式下,follower异步的从leader复制数据,数据只要被leader写入log就被认为已经commit,这种情况下如果follwer都落后于leader,而leader突然宕机,则会丢失数据。而Kafka的这种使用“in sync” list的方式则很好的均衡了确保数据不丢失以及吞吐率。follower可以批量的从leader复制数据,这样极大的提高复制性能(批量写磁盘),极大减少了follower与leader的差距(前文有说到,只要follower落后leader不太远,则被认为在“in sync” list里)。
Leader election
上文说明了Kafka是如何做replication的,另外一个很重要的问题是当leader宕机了,怎样在follower中选举出新的leader。因为follower可能落后许多或者crash了,所以必须确保选择“最新”的follower作为新的leader。一个基本的原则就是,如果leader不在了,新的leader必须拥有原来的leader commit的所有消息。这就需要作一个折衷,如果leader在标明一条消息被commit前等待更多的follower确认,那在它die之后就有更多的follower可以作为新的leader,但这也会造成吞吐率的下降。
一种非常常用的选举leader的方式是“majority vote”(“少数服从多数”),但Kafka并未采用这种方式。这种模式下,如果我们有2f+1个replica(包含leader和follower),那在commit之前必须保证有f+1个replica复制完消息,为了保证正确选出新的leader,fail的replica不能超过f个。因为在剩下的任意f+1个replica里,至少有一个replica包含有最新的所有消息。这种方式有个很大的优势,系统的latency只取决于最快的几台server,也就是说,如果replication factor是3,那latency就取决于最快的那个follower而非最慢那个。majority vote也有一些劣势,为了保证leader election的正常进行,它所能容忍的fail的follower个数比较少。如果要容忍1个follower挂掉,必须要有3个以上的replica,如果要容忍2个follower挂掉,必须要有5个以上的replica。也就是说,在生产环境下为了保证较高的容错程度,必须要有大量的replica,而大量的replica又会在大数据量下导致性能的急剧下降。这就是这种算法更多用在Zookeeper这种共享集群配置的系统中而很少在需要存储大量数据的系统中使用的原因。例如HDFS的HA feature是基于majority-vote-based journal,但是它的数据存储并没有使用这种expensive的方式。实际上,leader election算法非常多,比如Zookeper的Zab, Raft和Viewstamped Replication。而Kafka所使用的leader election算法更像微软的PacificA算法。
Kafka在Zookeeper中动态维护了一个ISR(in-sync replicas) set,这个set里的所有replica都跟上了leader,只有ISR里的成员才有被选为leader的可能。在这种模式下,对于f+1个replica,一个Kafka topic能在保证不丢失已经ommit的消息的前提下容忍f个replica的失败。在大多数使用场景中,这种模式是非常有利的。事实上,为了容忍f个replica的失败,majority vote和ISR在commit前需要等待的replica数量是一样的,但是ISR需要的总的replica的个数几乎是majority vote的一半。
如果当前ISR中有至少一个Replica还幸存,则选择其中一个作为新Leader,新的ISR则包含当前ISR中所有幸存的Replica(选举算法的实现类似于微软的PacificA)。否则选择该Partition中任意一个幸存的Replica作为新的Leader以及ISR(该场景下可能会有潜在的数据丢失)。如果该Partition的所有Replica都宕机了,则将新的Leader设置为-1。
上文说明了一个parition的replication过程,然尔Kafka集群需要管理成百上千个partition,Kafka通过round-robin的方式来平衡partition从而避免大量partition集中在了少数几个节点上。同时Kafka也需要平衡leader的分布,尽可能的让所有partition的leader均匀分布在不同broker上。另一方面,优化leadership election的过程也是很重要的,毕竟这段时间相应的partition处于不可用状态。一种简单的实现是暂停宕机的broker上的所有partition,并为之选举leader。实际上,Kafka选举一个broker作为controller,这个controller通过watch Zookeeper检测所有的broker failure,并负责为所有受影响的parition选举leader,再将相应的leader调整命令发送至受影响的broker。
这样做的好处是,可以批量的通知leadership的变化,从而使得选举过程成本更低,尤其对大量的partition而言。如果controller失败了,幸存的所有broker都会尝试在Zookeeper中创建/controller->{this broker id},如果创建成功(只可能有一个创建成功),则该broker会成为controller,若创建不成功,则该broker会等待新controller的命令。
Consumer group
Ref:
- Kafka文件存储机制那些事
- Kafka集群partitions/replicas默认分配解析