- 《SQL应用场景解析:如何通过SQL解决实际业务问题》
新手程序员如何用三个月成为SQL高手?万字自学指南带你弯道超车在数据为王的时代,掌握SQL已成为职场新人的必修课。你可能不知道,仅用三个月系统学习,一个零基础的小白就能完成从数据库萌新到SQL达人的蜕变。去年刚毕业的小王就是典型例子,通过本文的学习路线,他不仅成功转行数据分析师,薪资更是翻了两倍。本文将为你揭秘这条高效的学习路径,让你少走90%的弯路。[]()一、为什么每个职场新人都需要SQL这把
- 【大模型新书】基于RAG的生成式AI:使用LlamaIndex、Deep Lake和Pinecone构建自定义的检索增强生成管道
AI大模型-大飞
人工智能大模型学习AI产品经理语言模型大模型RAG大模型教程
书籍简介最小化AI幻觉,构建准确的自定义生成式AI管道,利用嵌入式向量数据库和集成的人类反馈来实现检索增强生成(RAG)购买本书的纸质版或Kindle版即包含免费的PDF格式电子书主要特点实现RAG的可追溯输出,将每个响应与其源文档链接,构建可靠的多模态对话智能体在管道中集成RAG、实时人类反馈改进和知识图谱,交付准确的生成式AI模型在动态检索数据集与微调静态数据之间平衡成本与性能书籍描述基于RA
- VLRMBench :一个涵盖数学推理、幻觉理解、多图像理解等多种任务的视觉-语言奖励模型基准测试数据集
数据集
2025-03-10,由上海交通大学和小红书公司联合创建了VLRMBench数据集。是一个专门用于评估视觉-语言奖励模型的综合性基准测试,包含12,634个问题,覆盖数学推理、幻觉理解和多图像理解三大领域。为视觉-语言奖励模型的全面评估提供了新的标准,推动了该领域的发展。一、研究背景近年来,随着大语言模型和大视觉-语言模型的快速发展,它们在多模态任务中取得了显著进展,广泛应用于医学影像、遥感、自动
- ——当机器开始"思考",人类终于读懂了自己的大脑
人工智能机器学习
第一层突破:AI让我们看见"思维的源代码"想象一下,你正在教ChatGPT写诗——当它从"枯藤老树昏鸦"的堆砌,突然产出"月光在二进制河流里流淌"的句子时,这不仅是算法的胜利,更是一面照向人类思维的魔镜。科学家发现,AI学习语言的方式竟与婴儿惊人相似:✅模式捕捉:像人类从环境声音中提取词汇✅联想迭代:用已知概念嫁接新知识(比如用"电"理解"闪电网络")✅创造性错误:AI的"幻觉"对应人脑的直觉跳跃
- 快瞳通用文档解析技术是怎样赋能下游各类大语言模型任务?
深圳市快瞳科技有限公司
语言模型easyui人工智能
、为什么不直接用大模型去解析文档?在文档、票据结构化识别这个赛道上,大语言模型存在天然的局限性:1.结构化数据生成效率低大模型在处理表格、公式等结构化内容时,需消耗大量计算资源,生成速度慢且成本高昂。例如,生成复杂表格可能导致响应延迟或格式错误。2.幻觉与准确性不足大模型可能虚据(如编造表格内容)或偏离文档原意,尤其在处理专业领域文档时,缺乏对上下文和实体关系的精准把控。3.格式兼容性差大模型难以
- 语义检索-BAAI Embedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性
汀、人工智能
LLM工业级落地实践embeddinglangchain人工智能智能问答RAG检索增强生成大模型
语义检索-BAAIEmbedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性语义向量模型(EmbeddingModel)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源。为加快解决大模型
- 大模型RAG入门到实战基础教程(非常详细),大模型RAG入门到精通,收藏这一篇就够了!
AI程序猿人
人工智能AI大模型AIRAGLLM大语言模型大模型入门
写在前面大模型(LargeLanguageModel,LLM)的浪潮已经席卷了几乎各行业,但当涉及到专业场景或行业细分域时,通用大模型就会面临专业知识不足的问题。相对于成本昂贵的“PostTrain”或“SFT”,基于RAG的技术方案往成为一种更优选择。本文从RAG架构入手,详细介绍相关技术细节,并附上一份实践案例。LLM的问题尽管LLM拥有令人印象深刻的能力,但是它们还面临着一些问题和挑战:幻觉
- 清华大学《DeepSeek学习手册》(全6册),一键整合安装包本地部署教程
2501_90737257
人工智能pdf
资源链接:https://pan.quark.cn/s/e9b7230b1538清华这个手册真是与众不同!它先是给你讲清楚原理,然后手把手教你怎么科学地使用。它不只是告诉你怎么提问,还会告诉你为啥要这么问,这不就是教你怎么掌握提示词的底层逻辑嘛。这才是真正的“授人以渔”,太有用了!清华的专家们毫无保留,分享了超多实用技巧,从避免AI幻觉的小窍门,到设计超棒提示语的秘籍,共104页,全是能直接上手的
- 有什么好用的 RPA 软件
IDFaucet
rpa
在数字化转型的浪潮中,企业和个人面临着日益繁杂的业务流程,RPA(机器人流程自动化)软件成为了提升效率的关键工具。其中,火语言RPA凭借其卓越的性能和丰富的功能,脱颖而出,成为众多用户的首选。一、操作简便,轻松上手火语言RPA最大的亮点之一就是它的易用性。其采用可视化编程界面,摒弃了传统编程复杂的代码编写过程。无论是职场新人还是经验丰富的专业人士,无需具备深厚的编程知识,只需通过简单的拖拽操作,就
- Dify理论:漫话RAG
几道之旅
Dify与Langflow智能体(Agent)知识库人工智能自然语言处理nlp
兜兜转转,RAG依旧是绕不开的话题。RAG,检索增强生成。给大语言模型一个大型图书馆。大语言模型在回答问题前,不要急于回答。先去图书馆里查阅一番,再根据所获取的知识进行回答。大语言模型,由闭卷考试,变成了开卷考试。第一:减轻了大模型的幻觉。大模型在不知道答案时,往往会胡编乱造。如今,有人把答案告诉了它,它只需要整理一下语言即可。使用大语言模型回答问题时,最极端的情况下,它收到的问题是:请根据背景知
- 快收藏,清华出品的DeepSeek:从入门到精通教程pdf
2501_90570130
人工智能pdf
资源链接:https://pan.quark.cn/s/e9b7230b1538家人们,我刚看完这份清华的PPT,被DeepSeek狠狠惊艳到它功能太强大啦,写文案、生成代码不在话下,还能辅助决策、做数据分析,连诗歌故事创作都OK!清华专家还分享超多实用技巧,像避免AI幻觉、设计超棒提示语,全是干货AI如今无处不在,不用就真的要落后啦!这份PPT简直是AI入门神器,有它就能变身AI达人别犹豫,赶紧
- 英语学习课程
西部驯兽师
项目管理学习
根据国内工程领域职场新人的特点,结合阿联酋工程项目管理实际需求,制定以下系统性英语学习方案(以12个月为周期):一、基础构建阶段(第1-3个月)学习内容:工程英语词汇体系使用《BEC中高级词汇手册》,重点掌握300个工程管理核心术语(如:BillofQuantities工程量清单、VariationOrder变更令)通过PingCode研发管理系统英文界面,每日记录10个工作中实际接触的工程术语商
- 借助知识图谱和Llama-Index实现基于大模型的RAG
爱吃牛油果的璐璐
知识图谱llamaoracle语言模型chatgpttransformer人工智能
幻觉是在处理大型语言模型(LLMs)时常见的问题。LLMs生成流畅连贯的文本,但经常产生不准确或不一致的信息。防止LLMs中出现幻觉的一种方法是使用外部知识源,如提供事实信息的数据库或知识图谱。矢量数据库和知识图谱使用不同的方法来存储和表示数据。矢量数据库适合基于相似性的操作,知识图谱旨在捕捉和分析复杂的关系和依赖关系。对于LLM中的幻觉问题,知识图谱是一个比向量数据库更好的解决方案。知识图谱为L
- 怎样通过人机融合智能去除“机器幻觉”?
人机与认知实验室
人机融合智能的目标是通过深度结合人类智能和机器智能,解决现有人工智能系统(特别是深度学习模型,如各种大模型)可能出现的问题,比如“机器幻觉”现象。机器幻觉指的是人工智能模型在处理信息时,做出错误的、非理性的判断或预测,这种现象往往源于模型在训练数据中的偏差、不完全信息或过度依赖某些特定模式。通过人机融合的方式,可以有效减少这种“幻觉”,进而提升人机环境系统智能的可靠性和解释能力。1.结合人类的直觉
- 从机器幻觉到智能幻觉
人机与认知实验室
机器幻觉与智能幻觉主要是关于人工智能(AI)系统在处理信息和生成输出时,可能会产生的错误认知或“幻觉”现象。1.机器幻觉在早期的计算机科学中,“机器幻觉”通常指的是计算机在进行数据处理时,出现了错误的输出或意外的结果。这类“幻觉”并不是指计算机本身具有意识,而是因为程序的设计、数据的不完整性或噪声、或算法的偏差等问题,导致机器产生了不符合现实的假设、错误的结论或奇怪的输出,具体涉及:图像生成幻觉:
- 机器幻觉产生的原因
人机与认知实验室
机器学习人工智能
机器幻觉是指模型生成的不符合现实的内容,比如图像生成中的错误或者不合理的输出。线性函数在神经网络中的作用通常是传递梯度,但如果每一层都是线性的,整个网络就相当于一个单层的线性模型,无法学习复杂的模式。所以如果只有线性层而没有非线性激活函数的话,网络将无法处理复杂任务。对于激活函数而言,常见的如ReLU、sigmoid、tanh。激活函数引入非线性,让网络有能力学习复杂的特征。但是如果没有合适的激活
- 清华大学《DeepSeek与AI幻觉》(无套路免费分享)
xiecoding.cn
人工智能deepseekdeepseek教程deepseek与AI幻觉deepseek清华教程
随着人工智能技术的飞速发展,以DeepSeek为代表的国产大模型正逐渐成为各行各业的重要工具。然而,AI在生成内容时常常会出现“幻觉”——即生成与事实不符、逻辑断裂或脱离上下文的内容。清华大学新闻与传播学院与人工智能学院联合推出的这篇教程《DeepSeek与AI幻觉》,系统性地讲解了AI幻觉的成因、评测方法及应对策略,旨在帮助用户更好地理解和使用AI工具。《DeepSeek与AI幻觉》:https
- Lil‘Log《Extrinsic Hallucinations in LLMs》读后总结
心碎小猫p
人工智能
博客《ExtrinsicHallucinationsinLLMs》由LilianWeng撰写,详细探讨了大型语言模型(LLMs)中“幻觉”现象的背景、原因、类型、影响及其缓解策略。本文对这一问题进行了深刻的剖析,结合了大量实例,提供了清晰的思路和可能的解决方案。以下是我该文章的总结和分析。ps.如果感兴趣可以查看原文《ExtrinsicHallucinationsinLLMs》,里面的内容更加详尽
- 中国CRM行业“烧钱抢市场”的末路狂奔:一场注定崩塌的资本游戏
saas
2025年情人节,腾讯以53%控股CRM头部厂商销售易的消息引发震动,都在感叹真是背靠大树好乘凉。但另一方面,还没有扭亏为盈,依赖融资的其他CRM厂商是不是也应该思考清楚:缺乏“现金牛”业务支撑的企业,究竟还能在亏损报表上续写多久的故事?更值得警惕的是,若仍执迷于价格战和规模幻觉,放任烧钱亏损黑洞吞噬现金流——即便以牺牲利润为代价短暂登顶市占率榜首,一旦资本“供氧”彻底切断,这场以市场占有率粉饰生
- 1秒响应、90%决策准确率!京东商家智能助手的技术探索
京东零售技术
人工智能大模型
引言多智能体的架构演进过程:第一阶段:B商城工单自动回复,LLM和RAG结合知识库应答,无法解决工具调用。第二阶段:京东招商站,单一Agent处理知识库问答和工具调用,准确率低&LLM模型幻觉,场景区分度差。第三阶段:京麦智能助手,引入multi-agent架构,master+subagents协同工作模式,把问题分而治之,显著提升准确率。商家助手的算法底座是基于大语言模型(LLM)构建的Mul
- 清华大学第5弹: 《DeepSeek与AI幻觉》 - 清华大学DeepSeek全套资料完整版 - 持续更新 - PDF免费下载
jiswordsman
人工智能pdf
由清华大学新闻与传播学院与人工智能学院双聘教授沈阳教授团队倾力打造的《DeepSeek与AI幻觉》,全面呈现,共计38页。《DeepSeek与AI幻觉》报告探讨了AI幻觉的成因、评测方法及其影响,并以DeepSeek模型为例,分析数据偏差、知识固化等问题如何导致幻觉现象。报告还提出缓解策略,如联网搜索、提示词优化,并探讨AI幻觉在科学创新和艺术创作中的潜在价值。点击链接免费下载《DeepSeek与
- 聊聊AI幻觉这件事,清华团队出品---DeepSeek与AI幻觉(文末有链接)
知白读书
人工智能深度学习ai大数据虚幻计算机视觉
咱们聊聊“AI幻觉”这事儿吧。相信你可能已经听说过这个词,但要是你还不知道,简单来说,就是AI(特别是像DeepSeek这种大数据生成模型)很“有逻辑”地胡说八道。它们的输出看似条理清晰,语言流畅得让人信服,甚至不乏引经据典——这种效果让我有时怀疑,它们是不是在偷偷做“伪学术”呢?最关键的就是,你一不小心就会被它们唬住,觉得它说的都对,其实全是空话。今天分享的是清华研究团队出品的新作:《DeepS
- 史上最全清华大学deepseek完全使用手册
2501_90739749
pdf
「DeepSeek资料大全」资源链接:https://pan.quark.cn/s/1352425b0645这几天项目比较忙,没时间分享,看到网络上一直有清华大学的Deepseek学习指南第一二三弹,清华大学Deepseek学习指南第四弹DeepSeek+DeepResearch让科研像聊天一样简单、第五弹DeepSeek与AI幻觉也都发布啦!第一时间我就整理了相关PDF分享给大家,感兴趣的小伙伴
- [机缘参悟-130] :《洞见》:为什么佛学是真的 -1-人的感觉、感受是自然选择的结果,是为基因传承服务的,苦和烦等各种感觉是个性化的幻觉,从心理学看佛学
文火冰糖的硅基工坊
随缘参悟领导力情商结构化架构自我认知
目录一、心理学对人的感觉的解释1.1感觉、知觉/感知、思维=》意识结果1.2感觉与其种类1.3知觉1.4感知1.5思维1.6意识1.7潜意识:灵修关注的领域1.8情绪二、情绪管理2.1情绪管理的方法2.2积极的思维方式2.3情绪管理的本质三、进化心理学对感知和情绪的解释3.1概述3.2进化心理学解释为什么人的情绪中,负面情绪占绝大多数3.3进化心理学解读人的快乐情绪3.4进化心理学解释为什么人的情
- 告别 AI 幻觉:LangChain + 知识图谱 + 大模型,打造可靠的智能应用
海棠AI实验室
AIAgent学习进阶实战人工智能langchain知识图谱Agent
目录前言:知识图谱在AI中的地位什么是知识图谱?为什么要用知识图谱?LangChain简介:它如何与知识图谱结合?项目准备:环境配置与工具选择手把手实现5.1从文本中提取结构化知识存入图谱6.2基于LangChain知识图谱的查询与推理实践Tips:如何让知识图谱规模化、应用化?总结与展望后记1.前言:知识图谱在AI中的地位在当今的人工智能领域,各类语言模型(如GPT系列、BERT等)已经深刻地影
- 零代码生成SQL实操:跟着focus_mcp_sql三步搞定数据查询需求
在数据驱动的时代,企业每天需要处理海量结构化数据,但非技术人员与数据库之间的“最后一公里”鸿沟始终存在。传统Text2SQL技术试图用自然语言直接生成SQL查询,然而大模型的黑箱特性、高昂成本及不可控的幻觉问题,使得这一目标长期陷入“理想丰满,现实骨感”的困境。本文将以Focus_MCP_SQL项目为核心,探讨一种兼顾效率、成本与透明性的新型解决方案。一、Text2SQL的困局与破局方向Text2
- 手把手教你玩转DeepSeek!100个超实用提示词免费领!
硅基打工人
AI经验分享笔记
大家好,我是硅基打工人呀!今天给大家送上一份超硬核干货!无论你是刚接触AI的萌新,还是想提升效率的职场达人,这100个DeepSeek专属提示词都能让你一键解锁AI的隐藏技能!文末免费领取方式,看到就是赚到~为什么你需要这100个提示词?实测案例:社区宝妈@小雨用提示词3分钟生成孩子专属睡前故事,告别灵感枯竭!职场新人@阿杰靠数据分析模板拿下转正答辩最高分!创业店主@老王用爆款文案公式让店铺销量翻
- Llama都在用的RoPE有了视频版,长视频理解/检索绝佳拍档
量子位
VideoRoPE团队投稿量子位|公众号QbitAILlama都在用的RoPE(旋转位置嵌入)被扩展到视频领域,长视频理解和检索更强了。复旦大学、上海AI实验室等提出VideoRoPE,并确定了将RoPE有效应用于视频所需的四个关键特性。在长视频检索、视频理解和视频幻觉等各种下游任务中,VideoRoPE始终优于先前的RoPE变体。用三维结构保留时空关系RoPE是一种能够将相对位置信息依赖集成到s
- 使用BREEBS平台提升AI知识库
dgay_hua
人工智能python
BREEBS是一个开放的协作知识平台,允许用户基于存储在GoogleDrive文件夹中的PDF文件创建知识胶囊(Breeb)。这些Breebs可供任何大语言模型(LLM)或聊天机器人使用,以提升其专业知识,减少幻觉,并提供访问来源的途径。Breebs背后实现了多种增强生成(RAG)模型,以在每次迭代中无缝提供有用的上下文。技术背景介绍随着自然语言处理(NLP)技术的进步,大语言模型(LLM)在生成
- 20元能做什么?一杯奶茶?一顿外卖?还是一个能够让你在8小时之内掌握React的零基础渐进式教程
深思君
react.js
一、适用人群零基础想入职前端开发的职场新人计算机相关专业在校学生需要快速习得React技能的在职开发者对Web开发感兴趣的自学者二、课程特点零门槛起步,零基础学习:在一台全新的电脑上,以“Windows桌面图标设置”为起点,以“学会使用AntDesignPro框架”为终点,由浅入深,步步为营,逐步实现我们的目标。保姆级教学,渐进式学习:一个视频一处知识点,每次只需专注学习一处知识,等学成之后再基于
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后