- 使用Scikit-learn实现支持向量机分类器
清水白石008
pythonPython题库scikit-learn支持向量机python
使用Scikit-learn实现支持向量机分类器引言支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,广泛应用于分类和回归任务。SVM的核心思想是通过寻找一个最佳的超平面来分隔不同类别的数据点。本文将详细介绍如何使用Python的Scikit-learn库实现一个支持向量机分类器,包括数据准备、模型训练、评估和可视化等步骤。1.支持向量机的基本原理支持向量机的
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- 微前端应用(qiankun+umi+antd)
他夏了夏天吖
umiantdreact前端开发语言react.js
目录1.微前端介绍以应用选型1.1什么是微前端?1.2技术选择2.开始使用2.1配置父应用2.2配置子应用2.3引入子应用2.3.1路由绑定引入子应用2.3.2组件引入子应用2.3.3组件引入子应用2.4子应用之间跳转3.子应用生命周期3.1父应用配置生命周期钩子3.2子应用配置生命周期钩子4.父子应用通信4.1基于useModel()的通信4.1.1主应用透传数据4.1.2子应用消费数据1.微前
- 【软件工程】-- 期末考试题含答案(二)(考前必看、看完不挂科)
四月天行健
大学课程期末试题软件工程p2plinq
试题一选择题1、具有风险分析的软件生命周期模型是( C )。A.瀑布模型 B.喷泉模型 C.螺旋模型 D.增量模型2、软件工程的基本要素包括方法、工具和(A)。A. 过程
- Python软体中使用Scikit-learn库训练简单线性回归模型
清水白石008
Python题库pythonpythonscikit-learn线性回归
Python软体中使用Scikit-learn库训练简单线性回归模型1.引言作为数据科学家和机器学习从业者,我们经常需要处理各种类型的数据,并从中提取有价值的信息。其中,线性回归是最基础也是最常用的机器学习算法之一。它可以帮助我们预测连续型目标变量,在很多实际应用场景中都有广泛应用,比如房价预测、销量预测等。在本文中,我将使用Python的Scikit-learn库,介绍如何训练一个简单的线性回归
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
qwe352633
python
importtorchimportnumpyasnpimporttorch.nnasnnfromsklearn.metricsimportaccuracy_score,precision_score,recall_score,f1_scoredata=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1
- SARIMA介绍
能源革命
技术能源算法能源
SARIMA模型,即季节性自回归积分移动平均模型(SeasonalAutoregressiveIntegratedMovingAverageModel),是一种用于处理和预测具有明显季节性变化的时间序列数据的统计模型。它是ARIMA模型的一种扩展,通过引入额外的参数来捕捉时间序列中的季节性模式。SARIMA模型的基本结构SARIMA模型的基本结构包括以下几个关键组成部分:p:非季节自回归项的阶数,
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
〖是♂我〗
python
代码:importtorchimportnumpyasnpimporttorch.nnasnnfromsklearn.metricsimportaccuracy_score,precision_score,recall_score,f1_score#定义数据:x_data是特征,y_data是标签(目标值)data=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39
- 自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
知识鱼丸
machinelearning人工智能
在TensorFlow中实现逻辑回归、保存模型并加载模型进行预测的过程可以分为以下几个步骤:准备数据:创建或加载你的自定义数据集。构建逻辑回归模型。训练模型。保存模型。加载模型。使用加载的模型进行预测。importtensorflowastfimportnumpyasnp#1.准备数据#示例:生成一些随机数据np.random.seed(0)X_train=np.random.rand(100,3
- 使用PaddlePaddle实现逻辑回归:从训练到模型保存与加载
Luzem0319
paddlepaddle逻辑回归人工智能
1.引入必要的库首先,需要引入必要的库。PaddlePaddle用于构建和训练模型,pandas和numpy用于数据处理,matplotlib用于结果的可视化。importpaddleimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt2.加载自定义数据集假设有一个CSV文件custom_dataset.csv,其中包含特征(自变量
- 算法篇-炼气期-STL常用函数与数据结构(上篇)
Starry-Walker
算法修炼篇算法c++数据结构stl
前言(双手合十,周身泛起淡淡的代码灵光)诸位道友且慢划走!今天我们不聊金丹元婴那些唬人的大神通,来点实在的——本座夜观天相,发现菜鸟修仙者十有八九不是被红黑二叉树压断灵根,就是在动态规划的心魔劫里走火入魔。但你们可知?只要炼化这枚名为STL的上古储物戒,就能让键盘自动结出算法法印,从此在力扣秘境横着走!(突然压低声音)上个月本座亲眼见证,某个连冒泡排序都要掐诀半柱香的萌新,靠着STL三件套竟在Co
- 如何通过开源SDK控制松灵机器人SCOUT底盘?
松灵机器人AgileX Robotics
编程语言自动驾驶机器学习
如何通过开源SDK控制松灵机器人SCOUT底盘?松灵课堂开课啦!为了更方便的解答大家在使用我们移动底盘进行开发调试的时候出现的问题,使二次研发更加得心应手,我们开设了松灵课堂,主要为小伙伴们讲解松灵机器人开发过程中一些需要注意的问题,同时也会将具有代表性的用户问题(隐去商业秘密后)详解发布出来,欢迎各位小伙伴随时与我们交流。松灵课堂系列SCOUT专题分为三篇文章,第一个专题我们采用松灵最具代表性的
- 松灵学院 | Scout mini 仿真指南
松灵机器人AgileX Robotics
gazabourdf语法ROS开发平台
本文适合有ROS1基础与了解urdf语法和gazebo的朋友SCOUTMINI是一款全地形高速MiniUGV,具有四轮差速驱动、独立悬挂、原地差速自转等特点,得益于自主研发的轻量级动力系统解决方案,SCOUTMINI最大速度高达10KM/H,专为前沿科学实验设计的全能型移动研究平台。此外,松灵为用户提供了SCOUTMINI的完整gazebo仿真支持库,本文将带您逐步上手使用:仓库地址:https:
- vdist-1.3.1:Python项目自动化构建与分发工具
46497976464
本文还有配套的精品资源,点击获取简介:vdist-1.3.1.tar.gz是一个Python项目的自动化构建、打包和分发工具的源代码压缩包,采用tar.gz格式,支持在不同环境中快速部署。它集成了分布式系统支持,如Zookeeper,以及云原生技术标准,确保了高效的软件生命周期管理。该工具具备依赖管理、自动化构建流程、环境隔离和多平台支持等功能,并提供了解压后目录结构的详细说明。1.vdist-1
- 产品团队构建方案-团队建设
人生淡然
团队开发
团队目标融合硬件行业链优势资源,规划公司智能硬件及AI算力产品方案团队定位产品孵化中心公司智囊团团队公约科学规划精准描述高效协作规范管理闭环管理持续改进团队管理范围商业价值、行业分析和行业融合产品需求调研和分析产品方案设计产品生命周期和版本管理项目进度管理产品设计开发研发打样对接客户联调客户联调开发客户技术支持和验证测试支持售前方案支持产品价值产品方案供期计划赋能渠道商产品价值产品方案供期计划团队
- 对线性回归的补充——正规方程法
梦醒沉醉
数学基础线性回归机器学习
目录1.引言2.单变量线性回归的解析解3.多变量线性回归的解析解参考1.引言 在单变量线性回归和多变量线性回归中,参数的更新都使用了梯度下降算法进行迭代,但是线性回归的参数最优值可以直接得到解析解。2.单变量线性回归的解析解 模型:f(x)=wx+b\Largef(x)=wx+bf(x)=wx+b 优化目标:(w∗,b∗)=arg minw∗,b∗∑i=1m[yi−f(xi)]2=arg
- 【项目配置管理】
三日看尽长安花
系统架构师数据库服务器运维
项目配置管理(ConfigurationManagement,CM)是项目管理中的一个重要方面,主要负责项目中所有工作产品(包括文档、代码、硬件等)的版本控制、变更控制和状态管理。其目标是确保在项目生命周期的各个阶段,所有配置项的变化都是有组织和可控的,并且这些变更不会影响项目的整体一致性和质量。项目配置管理通过跟踪项目中所有关键配置项的变化、更新和发布,帮助团队防止错误、版本混乱、工作重叠和其他
- 【机器学习】自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
加德霍克
机器学习paddlepaddle逻辑回归python作业
一、使用paddlepaddle框架实现逻辑回归1.数据部分:首先自定义了一个简单的数据集,特征X是100个随机样本,每个样本一个特征,目标值y基于线性关系并添加了噪声。将numpy数转换为Paddlepaddle张量,方便后续在模型中使用。2.模型定义部分:方案1:使用nn.Sequential组网代码解释①数据生成与转换:生成自定义的特征矩阵X和目标值向量y,并添加高斯噪声模拟真实数据。使用p
- 软件测试面试笔试题-选择题(物联网)
测试界媛姐
自动化测试软件测试面试软件测试面试职场和发展软件测试
1.在软件生命周期中,测试人员从那个阶段开始参与更有利于软件项目的成功()a)需求分析阶段b)设计阶段c)编码阶段d)系统测试阶段2.在Bugzilla缺陷跟踪系统中,下列选项中属于缺陷状态的是()(选两项)a)newb)fixedclaterd)verified3.在Bugzilla中,如果一个缺陷的处理状态被开发人员置为Wontfix,则表明()a)这个Bug中描述的不是问题d)这个Bug中描
- Vue 89 ,Vue3生命周期钩子函数(Vue3生命周期)
北城笑笑
Vue前端vue.js
目录前言Vue3引入了一些变化,特别是针对生命周期钩子函数。Vue3支持两种API风格:传统的选项式API(OptionsAPI)和新的组合式API(CompositionAPI)。我们都知道选项式API是Vue2中熟悉的语法风格,它在Vue3中仍然得到支持。这里来分享记录,两种API下的生命周期钩子函数。一.组合式API(Vue3,CompositionAPI)二.选项式API(Vue2,Opt
- Spring ObjectFactory:不只是工厂,更是Bean生命周期的掌舵者
码农技术栈
springcloudspringspringboot后端微服务
在Spring中,ObjectFactory就像是一个“对象工厂”,它的主要作用是延迟加载和创建对象。想象一下,你正在开发一个应用,其中有些对象在启动时并不需要立即创建,而是等到真正需要使用时再创建。这时候,如果一开始就创建所有对象,不仅会浪费资源,还可能影响应用的启动速度。ObjectFactory就是为了解决这个问题而存在的。它允许你在需要对象时,再通过调用getObject()方法来创建对象
- 自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
Jam-Young
python机器学习开发语言
自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLinearRegressionfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimport
- 使用scikit-learn中的线性回归包对自定义数据集进行拟合
Luzem0319
scikit-learn线性回归python
1.导入必要的库首先,需要导入所需的库,包括pandas用于数据处理,numpy用于数值计算,以及scikit-learn中的线性回归模型。importpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.linear_modelimportLinearRegressionfrom
- Python 机器学习 基础 之 【常用机器学习库】 NumPy 数值计算库
仙魁XAN
Python机器学习基础+实战案例python机器学习numpy数值计算
Python机器学习基础之【常用机器学习库】NumPy数值计算库目录Python机器学习基础之【常用机器学习库】NumPy数值计算库一、简单介绍二、Numpy基础1、安装NumPy2、导入NumPy3、创建数组4、数组操作5、常用函数6、矩阵运算7、广播机制8、随机数三、在机器学习中使用到Numpy的简单示例1、数据预处理1.1数据归一化1.2数据标准化2、特征工程1.1多项式特征3、简单线性回归
- 39【内存条与硬盘的架构逻辑】
学编程的闹钟
从零开始学编程语言学习
内存和硬盘大家应该并不陌生,不过要以文字的形式表述2者的关系难度还是很大的,我们这节课就来讲解这个问题,本节课非常重要,本节课讲的点便是几乎所有的逆向工具研发的理论框架(由于本文是知识手册,因此在后面会有专门的帖子来引用本帖)解下来我使用玄幻小说的情节为大家讲解,有一个功法叫灵体转换,就是可以将自己的身体变成灵魂形态大家把硬盘想象成一个身体,内存想象成灵魂,也就是说一个软件要想运行,windows
- Docker 入门到精通专栏--2.2 容器 (Container)
xiaoheshang_123
eurekajava云原生
目录2.2容器(Container)2.2.1容器的生命周期管理2.2.2启动、停止、删除容器2.2.3查看容器状态与日志总结2.2容器(Container)容器是Docker镜像的运行实例,它提供了一个独立的、隔离的运行环境,包含了自己的文件系统、进程空间和网络栈。容器化技术使得应用程序可以在不同的环境中保持一致的行为,并且可以快速启动和停止。本节将详细介绍容器的生命周期管理、如何启动、停止和删
- 考公必学!趣味生物知识大集合
张小小大智慧
行测行测
考公必学!趣味生物知识大集合考公人们,化学知识刚消化完,现在咱们一头扎进生物知识的奇妙世界!生物知识在考公常识里也是常客,不管是笔试还是面试,掌握这些内容都能让你脱颖而出。废话不多说,马上开启这场生物探秘之旅!三、生物知识:生命奥秘大起底(一)人体结构:身体里的“超级工厂”人体九大系统:人体就像一座超复杂又精密的“超级工厂”,每个系统都是这个工厂里不可或缺的“小部门”,各自有着独特的分工,又紧密协
- 炸弹 (boom.c)(100分双端递推+分割线优化)
qystca
算法
炸弹(boom.c)时间限制:800ms内存限制:256000KiB进度:57/12406=0.5%题目描述出题助教:Sakiyary验题助教:Corax、XiEn、ErinwithBMQ、runz、MacGuffin、Bob维多利亚的腐烂荒野上出现了N个魔物,你和小维需要抓紧时间调配炸弹对付它们。荒野可以视为一张方格图,(x_i,y_i,h_p_i)表示魔物i出现在方格(xi,yi)上,其生命值
- python return用法_为什么函数在python中以“return 0”而不是“return”结尾?
weixin_39779467
pythonreturn用法
你能解释一下“回归0”和“回归”之间的区别吗?例如:do_1():foriinxrange(5):do_sth()return0do_2():foriinxrange(5):do_sth()return上面两个函数有什么区别?解决方法:取决于用法:>>>defret_Nothing():...return...>>>defret_None():...returnNone...>>>defret_0
- 细说机器学习算法之ROC曲线用于模型评估
Melancholy 啊
机器学习算法人工智能数据挖掘python
系列文章目录第一章:Pyhton机器学习算法之KNN第二章:Pyhton机器学习算法之K—Means第三章:Pyhton机器学习算法之随机森林第四章:Pyhton机器学习算法之线性回归第五章:Pyhton机器学习算法之有监督学习与无监督学习第六章:Pyhton机器学习算法之朴素贝叶斯第七章:Pyhton机器学习算法之XGBoost第八章:Pyhton机器学习算法之GBDT第九章:Pyhton机器学
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR