- 【学习思维模型】
宇希啊
思维模型学习
学习思维模型一、理解类模型二、记忆类模型三、解决问题类模型四、结构化学习模型五、效率与习惯类模型六、高阶思维模型七、实践建议八、新增学习思维模型**1.波利亚问题解决四步法****2.主动回忆(ActiveRecall)****3.鱼骨图(因果图/IshikawaDiagram)****4.MECE原则(MutuallyExclusive,CollectivelyExhaustive)****5.
- 深度学习训练中GPU内存管理
@Mr_LiuYang
遇到过的问题内存管理内存溢出outofmemoryGPU内存
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在深度学习模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或BatchSize受限,GPU内存管理是优化性能和避免OutOfMemoryError的关键挑战。本博客简介PyTorch中GPU内存管理的核心函数、用法和实战技巧,帮助开发者高效利用显存资源。
- PyCharm 对接 DeepSeek 大模型的详细操作流程
程之编
pycharmidepython
以下是使用PyCharm对接DeepSeek大模型的详细操作流程,基于Python开发环境。假设你已具备DeepSeekAPI的访问权限(需提前申请APIKey):步骤1:PyCharm环境准备创建新项目打开PyCharm→NewProject→选择纯Python项目→指定项目路径→创建虚拟环境(建议选Virtualenv)。安装依赖库打开终端(Terminal)执行以下命令:pipinstall
- 一学就会的深度学习基础指令及操作步骤(5)使用预训练模型
小圆圆666
深度学习人工智能python卷积神经网络
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
- DeepSeek赋能机器人革命:从推理引擎到行业落地的全栈技术实践
量子纠缠BUG
DeepSeek部署AIDeepSeek机器人人工智能AI编程
——解析大模型如何重塑机器人产业的智能化未来引言:机器人产业的技术范式转移在2025年全球机器人市场规模突破2000亿美元的关键节点,DeepSeek凭借其创新的"推理优先"技术架构,正在重构机器人产业的智能化路径。通过将大模型的认知推理能力与机器人执行系统深度融合,DeepSeek在商业服务、工业制造、智慧城市等领域创造了多个标杆案例。本文将从技术架构、行业应用、开发实践三个维度,深度解读Dee
- 【C#实现手写Ollama服务交互,实现本地模型对话】
吾与谁归in
C#学习WPFc#OllamaDeepseek本地模型
前言C#手写Ollama服务交互,实现本地模型对话最近使用C#调用OllamaSharpe库实现Ollama本地对话,然后思考着能否自己实现这个功能。经过一番查找,和查看OllamaSharpe源码发现确实可以。其实就是开启Ollama服务后,发送HTTP请求,获取返回结果以及一些数据处理。基本流程1、启动Ollama服务进程。2、创建HttpClient对象。3、创建请求体(参数:模型名称、提示
- 《AI浪潮中的璀璨新星:Meta Llama、Ollama与DeepSeek的深度剖析》
空云风语
人工智能人工智能llama
《AI浪潮中的璀璨新星:MetaLlama、Ollama与DeepSeek的深度剖析》引言:AI大模型的群雄逐鹿时代在科技飞速发展的当下,AI大模型领域已成为全球瞩目的焦点,竞争激烈程度堪称白热化。从OpenAI推出的GPT系列,到谷歌的BERT、百度的文心一言等,众多巨头纷纷下场,不断推陈出新,试图在这个充满潜力的领域占据一席之地。而在这场激烈的角逐中,MetaLlama、Ollama和Deep
- 模型上下文协议(MCP):构建 AI 与数据交互的新范式
xxgshxs
人工智能chatgptprompt文心一言llamacopilot
引言在人工智能领域,大型语言模型(LLMs)的应用正从通用问答向复杂任务执行演进,但数据孤岛、工具集成碎片化及隐私安全等问题制约了其潜力。模型上下文协议(ModelContextProtocol,MCP)作为Anthropic提出的开放标准,旨在通过标准化接口连接AI应用与异构数据源及工具,重塑AI开发范式。本文从技术架构、核心功能、应用场景等维度解析MCP的设计逻辑与实践价值。一、核心概念与设计
- 量子计算如何颠覆能源优化领域:从理论到实践
Echo_Wish
人工智能前沿技术量子计算能源
量子计算如何颠覆能源优化领域:从理论到实践大家好,我是Echo_Wish,一个热爱探索前沿技术的人工智能与Python领域的技术分享者。今天,我们将深入探讨一个激动人心的话题——量子计算在能源优化中的应用。这不仅是科技领域的全新趋势,也可能为全人类的能源利用效率带来革命性突破。从理论模型到实际应用,量子计算已经在一些能源相关领域崭露头角,例如电网优化、可再生能源分配和物流节能规划。以下,让我们一步
- 池化的定义与核心思想
code 旭
AI人工智能学习pythonnumpy人工智能
一、池化的定义与核心思想定义:池化是卷积神经网络(CNN)中的一种下采样操作,用于降低特征图的空间维度(宽高),保留主要特征。核心目标:减少计算量:缩小特征图尺寸,降低后续层参数规模。增强模型鲁棒性:对微小平移、旋转等变化不敏感。防止过拟合:通过降维减少冗余信息。二、池化的数学公式1.最大池化(MaxPooling)取池化窗口内的最大值:yi,j=maxp=0kh−1maxq=0kw−1xi⋅
- XGBoost常见面试题(五)——模型对比
月亮月亮要去太阳
机器学习经验分享
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
- JavaScript面试宝典
傻小胖
javascript面试前端
1.JS由哪三部分组成?JavaScript由以下三部分组成:ECMAScript(ES):JavaScript的核心语法,如变量、作用域、数据类型、函数、对象等。DOM(文档对象模型):用于操作HTML和XML文档的API,可以动态修改网页内容、结构和样式。BOM(浏览器对象模型):用于操作浏览器窗口和页面,例如window、navigator、location、history、screen等对
- Spring WebFlux:响应式编程
m0_74825223
面试学习路线阿里巴巴springjava后端
在软件开发领域,随着互联网应用的规模和复杂性不断增加,传统的编程模型逐渐暴露出一些局限性,尤其是在面对高并发、大规模数据流处理等场景时。为了应对这些挑战,响应式编程(ReactiveProgramming)应运而生,它提供了一种更为高效、灵活的编程范式,以适应不断变化的系统需求。1.SpringWebFlux简介WebFlux提供了一个非阻塞、异步的Web框架,允许开发者构建高性能、可伸缩的Web
- likeadmin 安装与使用指南
强和毓Hadley
likeadmin安装与使用指南项目地址:https://gitcode.com/gh_mirrors/li/likeadmin目录结构及介绍在克隆或下载likeadmin项目后,你会看到以下主要目录:admin:存放所有后端管理相关的代码。controller:控制器目录,负责处理HTTP请求。model:数据模型目录,用于数据库操作。service:服务层目录,提供业务逻辑。frontend:
- ESP32 小智 AI 机器人入门教程从原理到实现(自己云端部署)
与光同尘 大道至简
人工智能机器人python人机交互githubvisualstudio单片机
此博客为一篇针对初学者的详细教程,涵盖小智AI机器人的原理、硬件准备、软件环境搭建、代码实现、云端部署以及优化扩展。文章结合了现有的网络资源,取长补短,确保内容易于理解和操作。简介:本教程将指导初学者使用ESP32微控制器开发一个简单的语音对话机器人“小智”。我们将介绍所需的基础原理、硬件准备、软件环境搭建,以及如何编写代码实现语音唤醒和与云端大模型的对接。通过本教程,即使没有深厚的AI或嵌入式经
- Manus联创澄清:我们并未使用MCP技术
耶耶Norsea
网络杂烩人工智能
摘要近日,Manus联创针对外界关于其产品可能涉及“沙盒越狱”的疑问进行了正式回应。公司明确表示并未使用Anthropic的MCP(模型上下文协议)技术,并强调MCP是一个旨在标准化应用程序与大型语言模型(LLM)之间上下文交互的开放标准。此外,Manus联创宣布了开源计划,以增强透明度和社区参与。季逸超也确认他们没有采用MCP技术,进一步澄清了相关质疑。关键词沙盒越狱,MCP技术,开源计划,透明
- 手把手教你学Simulink实例:基于Simulink的三相桥式全控整流电路设计与仿真实例
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulink单片机嵌入式硬件matlabsimulink
目录手把手教你学Simulink实例:基于Simulink的三相桥式全控整流电路设计与仿真实例一、背景介绍二、所需工具和环境三、步骤详解步骤1:创建Simulink模型步骤1.1:打开Simulink并新建模型步骤2:添加电源模块步骤2.1:添加三相交流电源步骤3:设计三相桥式全控整流电路步骤3.1:添加可控硅模块步骤3.2:连接三相桥式全控整流电路步骤4:添加负载模块步骤4.1:添加电阻性负载步
- 深入学习Nginx:从入门到实践
小码快撩
nginx学习运维
引言Nginx,全名“EngineX”,是一款高性能的HTTP和反向代理服务器,由俄罗斯程序员IgorSysoev开发。以其轻量级、高并发处理能力和稳定性而闻名于世,广泛应用于负载均衡、动静内容分离、API网关、缓存服务以及静态文件服务等多个场景。本文旨在为读者提供一份详尽的Nginx技术学习指南,助您快速掌握并应用这一强大工具。。一、事件驱动模型在Nginx中,事件驱动模型是其高效处理并发连接的
- 卡尔曼滤波算法从理论到实践:在STM32中的嵌入式实现
DOMINICHZL
STM32算法stm32嵌入式硬件
摘要:卡尔曼滤波(KalmanFilter)是传感器数据融合领域的经典算法,在姿态解算、导航定位等嵌入式场景中广泛应用。本文将从公式推导、代码实现、参数调试三个维度深入解析卡尔曼滤波,并给出基于STM32硬件的完整工程案例。一、卡尔曼滤波核心思想1.1什么是卡尔曼滤波?卡尔曼滤波是一种最优递归估计算法,通过融合预测值(系统模型)与观测值(传感器数据),在噪声干扰环境下实现对系统状态的动态估计。其核
- 【LLM】预训练的具体流程
FOUR_A
LLMpython人工智能深度学习大模型
分词器训练预训练模型:就像你已经学会了一些基础知识的“大脑”,我们可以在这个基础上继续学习新东西。比如,有些模型已经学会了英语,但中文学得不够好。中文预训练:为了让这个“大脑”更好地理解中文,我们需要用大量的中文数据继续训练它。分词器(Tokenizer):它的作用是把一句话拆分成一个个小单元(比如词语或字)。比如,“我喜欢学习”会被拆成“我/喜欢/学习”。这些拆分后的单元会被转换成数字,方便模型
- autoMate - AI实现电脑任务自动化的本地工具
小众AI
AI开源人工智能自动化运维
GitHub:https://github.com/yuruotong1/autoMate更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AIautoMate是一款由开源开发的本地自动化工具,以AI+RPA(人工智能+机器人流程自动化)为核心特色。它将大型语言模型的智能理解与RPA的流程执行能力结合,用户只需用自然语言描述任务,如“整理桌面文件”或“生成周报”,即可
- 从零手撕 LLaMa3 项目爆火(图解+代码)
机器学习社区
大模型深度学习大模型算法人工智能RAG多模态大模型Llama面试题
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。汇总合集《大模型面试宝典》(2024版)发布!一个月前,Meta发布了开源大模型llama3系列,在多个关键基准测试中优于业界SOTA模型,并在代码生成任务上全面领先。此后,开发
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- 从零开始构建大模型(LLM)应用
和老莫一起学AI
人工智能ai大模型语言模型llm自然语言处理学习
大模型(LLM)已经成为当前人工智能的重要部分。但是,在这个领域还没有固定的操作标准,开发者们往往没有明确的指导,需要不断尝试和摸索。在过去两年中,我帮助了许多公司利用LLM来开发了很多创新的应用产品。基于这些经验,我形成了一套实用的方法,并准备在这篇文章中与大家分享。这套方法将提供一些步骤,帮助需要的小伙伴在LLM应用开发的复杂环境中找到方向。从最初的构思到PoC、评估再到产品化,了解如何将创意
- 《颠覆认知,我用大模型+Redis实现SQL智能补全,开发效率暴涨500%》
煜bart
mysqlAI编程人工智能redis
一、前言:当SQL补全遇到大模型(插入传统SQL补全工具与ChatGPT对比图)你是否还在为这些场景抓狂?-凌晨3点记不清HiveQL的窗口函数语法-面对新接触的ClickHouse方言不知所措-团队新人总把STR_TO_DATE写成DATE_FORMAT传统IDE的SQL补全就像"人工智障",直到我把大模型装进Redis…##二、效果展示:智能补全的降维打击(GIF动图展示输入SELECT*FR
- Zookeeper与Kafka学习笔记
上海研博数据
zookeeperkafka学习
一、Zookeeper核心要点1.核心特性分布式协调服务,用于维护配置/命名/同步等元数据采用层次化数据模型(Znode树结构),每个节点可存储<1MB数据典型应用场景:HadoopNameNode高可用HBase元数据管理Kafka集群选举与状态管理2.设计限制内存型存储,不适合大数据量场景数据变更通过版本号(Version)控制,实现乐观锁机制采用ZAB协议保证数据一致性二、Kafka核心架构
- ITSM流程落地经验之变更管理
运维经验云计算容器服务器
本文来自腾讯蓝鲸智云社区用户:CanWay大多数组织中都实施了变更管理,但是效果参差不齐,尤其在变更管理的核心环节,部分组织因缺乏有效的把控,使得变更管理的效果不尽人意,甚至可能面临失控的风险。为此,我们有必要深入探讨并详细分析变更管理中的关键活动,并通过实例加以说明。变更模型与适用场景变更模型是对特定变更的可重复管理方法,这种方法为处理一般变更提供指导,解决一般变更无法适应不同的管理模式的问题。
- 程序员如何用DeepSeek让代码效率翻倍?这份实战手册请收好
后端
最近公司新来的实习生小张让我眼前一亮,上周他只用三小时就完成了原本需要两天的工作量——优化一个老旧的后端接口。当我翻开他的代码才发现,这个00后小伙子的秘密武器居然是个叫DeepSeek的AI工具。你可能已经注意到,GitHub上越来越多的开源项目开始标注"DeepSeek适配"的字样。这个由中国团队自主研发的大模型,正在悄然改变程序员的工作方式。还记得去年调试分布式系统时的痛苦经历吗?当时我对着
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 如果,你想找 AI大模型相关的工作,这三个建议你一定要看!
我爱学大模型
人工智能chatgptAI大模型AI大模型入门转行程序员
01各种大厂小厂创业团队和AI擦边的面试难度,由难到简单,依次是:大模型算法(⭐⭐⭐⭐⭐)模型部署加速(⭐⭐⭐⭐)RAG等相关技术(⭐⭐⭐)纯应用(⭐⭐)Prompt工程师等其他自媒体(⭐)会简单应用就行02这结果方向,B站找几个视频看看,这里推荐用Qwen7B,开源的模型,一个3060都能跑。例如这个,如何微调Qwen开源模型。https://www.bilibili.com/video/BV1
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt