- Agent实战系列:快速自定义Agent在业务线落地:从入门到高级[实现tool串联、多轮对话、多Agent动态编排、静态编排等]
汀、人工智能
AIAgentLLM工业级落地实践人工智能AIAgent多智能体协作知识问答智能问答RAGAI编排流
Agent实战系列:快速自定义Agent在业务线落地:从入门到高级[实现tool串联、多轮对话、多Agent动态编排、静态编排等]本系列涵盖了多个关键功能的实现,包括tool串联、多轮对话、多Agent动态编排以及静态编排等。通过这些功能的学习与实践,用户将能够构建出功能丰富、灵活多变的Agent系统。tool串联让Agent能够调用多种工具和服务,多轮对话则让Agent能够与用户进行更加自然和深
- 【趣学SQL】第八章:SQL 实战案例 8.2 SQL 性能监控与调优——给数据库装上“心电图仪“的硬核指南
精通代码大仙
数据库数据库sql
第八章:SQL最佳实践8.2SQL性能监控与调优——给数据库装上"心电图仪"的硬核指南欢迎来到「数据库急诊监护室」!今天我们将化身"SQL性能侦探",用一家日活百万的虚拟吃瓜论坛"瓜田社"的崩库案例,教你如何用监控工具抓住"性能杀手",让数据库从"垂死挣扎"变"生龙活虎"。8.2.1常见的监控工具——数据库的"健康手环"全家桶工具1:Prometheus+Grafana(豪华体检套餐)#prome
- Rasa框架的优点和缺点
不会编程的程序猿ᅟ
rasa
优点1.开源和免费Rasa是开源的,无需支付许可费用,可自由下载和修改源码,适合预算有限或需要定制化解决方案的团队。企业可以完全掌控自己的对话系统,无需依赖外部服务。2.数据隐私和安全Rasa支持完全本地部署,无需将数据上传到第三方服务器,数据隐私保护性高,非常适合医疗、金融和其他注重数据安全的行业。3.高度可定制化可以根据需求修改NLU管道、策略和模型。支持自定义动作(CustomActions
- Rasa的工作流程
不会编程的程序猿ᅟ
rasa
Rasa的工作流程分为两个主要部分:NLU(自然语言理解)和Core(对话管理)。整个流程包括从用户输入到最终响应的多个步骤,下面是详细的工作流程解析:1.用户输入用户通过聊天界面(如微信、Telegram、Slack或Web前端)发送自然语言消息,例如:"我想预订一张明天去北京的火车票"2.自然语言理解(NLU)Rasa的NLU模块解析用户输入,提取意图和实体。2.1意图识别NLU模块会识别用户
- 再分享API形式调用Dify项目应用
福安德信息科技
大模型python人工智能大模型llmdify
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。RAGOnMedicalKG:大模型结合知识图谱的RAG实现DSPy:变革式大模型应用开发最简明的Few-shotPrompt指南SemanticKernel:微软大模型开发框架——LangChain替代对话大模型Prompt是否需要
- AI Agent的记忆系统实现:从短期对话到长期知识
技术出海录
人工智能AIaiagent
在上一篇文章中,我们搭建了AIAgent的基础框架。今天,我想深入讲讲AIAgent最核心的部分之一:记忆系统。说实话,我在实现记忆系统时走了不少弯路,希望通过这篇文章,能帮大家少走一些弯路。从一个bug说起还记得在开发知识助手的过程中,我遇到了一个很有意思的问题。一天我正在测试多轮对话功能:我:Python的装饰器是什么?助手:装饰器是Python中用于修改函数或类行为的一种设计模式...(省略
- 浏览器页面操作——实时监控网页变化,读取网页内容
集简云-软件连接神器
人工智能大数据chatgpt
浏览器页面操作功能介绍浏览器页面操作是集简云的一款免费内置应用,它可以定时监控网页变化,精准捕捉所需信息。一键设置指定网页与元素,全自动监测并即时推送通知,助您在第一时间了解网页最新情况,让您更高效便捷地获取与同步信息。您还可以使用浏览器页面操作读取网页内容,结合集简云集成的ChatGPT应用,让ChatGPT可以结合网页实时内容进行智能问答对话或文本生成。集简云平台,赞1▲新功能讲解视频浏览器页
- gradio可视化对话框()
@小张不嚣张
python开发语言
fromtransformersimportAutoModel,AutoTokenizerimportgradioasgrimportmdtex2html#-*-coding:utf-8-*-importosimporttorchimportinterfaceAllfromdatetimeimportdatetimeimporttimeimportinference_LLaVaimportshut
- 【趣学SQL】第八章:SQL 实战案例 8.1 编写可维护的 SQL 代码——从“代码屎山“到“代码花园“的改造指南
精通代码大仙
数据库sql数据库java
第八章:SQL最佳实践8.1编写可维护的SQL代码——从"代码屎山"到"代码花园"的改造指南欢迎来到「SQL代码整形医院」!今天我们将化身"代码园丁",用一家因SQL代码混乱导致全员加班的虚拟电商公司案例,教你如何把"祖传屎山代码"修剪成"清爽可维护的艺术品"。8.1.1代码整洁的原则——SQL界的"优雅八荣八耻"案例:一段让同事想拔刀的代码SELECTa.id,b.total,c.nameFRO
- 【EXCEL_VBA_实战】多工作薄合并深入理解
南子98
软件应用excel
工作背景:多个工作薄存在冲突的名称,需快速合并困难点:工作表移动复制时,若有冲突的名称,会不断弹出对话框待人工确认思路:利用代码确认弹出的对话框关键代码:Application.DisplayAlerts=FalseSubMerge_WB()'文件合并DimWBs_SourceAsVariant'工作薄序列DimsAsInteger'工作薄序列下标'选择工作薄()WBs_Source=Applic
- 【大模型应用开发极简入门】使用GPT-4和ChatGPT的编程起点:ChatCompletion详解
roman_日积跬步-终至千里
#LLMchatgpt人工智能
文章目录一.多轮对话二.使用起点:ChatCompletion三.调用模型:create方法1.主要的输入参数:model、message2.对话长度和token数量管理3.可选参数四.ChatCompletion端点的输出格式本文讨论如何使用GPT-4和ChatGPT背后的模型,以及OpenAIPython库。目前,GPT-3.5Turbo是最便宜且功能最多的模型。因此,它也是大多数用例的最佳选
- Python绘制数据地图-MovingPandas
懒大王爱吃狼
Python数据可视化python信息可视化开发语言Python基础python学习
MovingPandas是一个用于时空数据分析的Python库,它扩展了Pandas和GeoPandas,使得处理和分析带有时间戳的地理数据变得更加方便。虽然MovingPandas本身不直接提供数据可视化功能,但你可以结合其他库如matplotlib、folium或plotly来绘制数据地图。以下是一个简单的示例,展示如何使用MovingPandas和matplotlib来绘制带有时间戳的地理数
- 分钟级降水预报 API:精准把握降水
api
前言在气象领域,降水预报一直是关乎国计民生的关键环节。从农业生产规划到城市防洪排涝,从交通出行安排到大型活动组织,准确及时的降水信息都至关重要。而传统的降水预报往往以小时甚至更长时间尺度为主,对于一些突发性强、时空分布不均的短时强降水事件,其预报精度和时效性难以满足实际需求。如今,随着气象科技的飞速发展,分钟级降水预报API应运而生,为气象预报服务带来了革命性的变革。分钟级降水预报APIAPISp
- WebRTC协议学习之一(WebRTC简介)
音视频开发老马
webrtc学习网络
什么WebRTCWebRTC,名称源自网页即时通信(英语:WebReal-TimeCommunication)的缩写,是一个支持网页浏览器进行实时语音对话或视频对话的API。它于2011年6月1日开源并在Google、Mozilla、Opera支持下被纳入万维网联盟的W3C推荐标准。谷歌2011年6月3日宣布向开发人员开放WebRTC架构的源代码。这个源代码将根据没有专利费的BSD(伯克利软件发布
- 两款开源的微信对话生成器,做成了在线小工具
Java潘老师
项目源码微信
如果你也想在社交媒体上、视频创作中或者日常娱乐里,展现出与众不同的一面,那么微信对话生成器绝对是你不可错过的好帮手。今天,就让我们一起走进3M万能在线工具箱https://3m.panziye.com中的两款微信对话生成器,看看它们如何为我们的创意插上翅膀。微信对话在线生成器这款微信对话在线生成器,可谓是功能丰富且操作便捷。它基于GitHub上的开源项目搭建而成,能够满足你对微信对话的各种想象。无
- 使用SolarChat实现中英韩翻译的实战指南
azzxcvhj
python
在这篇文章中,我们将探索如何利用SolarChat这一强大的聊天模型来实现中英韩翻译功能。SolarChat是一个方便的语言模型接口,能够帮助我们将自然语言处理任务集成到项目中。本文将详细介绍这个模型的核心原理,并通过示例代码展示如何使用它进行翻译。技术背景介绍随着人工智能的发展,语言模型在各种自然语言处理任务中扮演了重要角色。特别是在翻译、对话生成等领域,先进的语言模型如SolarChat为我们
- Ollama 完整教程:本地 LLM 管理、WebUI 对话、PythonJava 客户端 API 应用
web13765607643
java
随着大语言模型(LLM)的普及和应用场景的广泛扩展,Ollama提供了一个强大的本地LLM管理工具,支持WebUI对话功能,同时还为Python和Java提供了灵活的客户端API。本教程将详细介绍如何使用Ollama工具,涵盖从本地安装、模型管理、WebUI聊天界面到通过Python和Java进行集成的全方位应用。一、Ollama简介Ollama是一款用于本地运行大语言模型的工具,支持对LLM模型
- 人工智能与人工计算的发展——孙凝晖院士
一位安分的码农
大语言模型人工智能
人工智能领域近年来正在迎来一场由生成式人工智能大模型引领的爆发式发展。2022年11月30日,OpenAI公司推出一款人工智能对话聊天机器人ChatGPT,其出色的自然语言生成能力引起了全世界范围的广泛关注,2个月突破1亿用户,国内外随即掀起了一场大模型浪潮,Gemini、文心一言、Copilot、LLaMA、SAM、SORA等各种大模型如雨后春笋般涌现,2022年也被誉为大模型元年。当前信息时代
- python 访问openai接口
哦里 哦里哦里给
PythonAI实战深度学习pythonaioneapi
目录一、openai接口文档1.访问OpenAIAPI文档2.注册和获取API密钥3.快速开始:示例代码4.请求结构和响应格式二、步骤1、安装openai库2、示例代码实现一个命令行循环对话机器人加入gradio界面demo一、openai接口文档使用OpenAIAPI文档可以帮助你更好地理解和操作API,尤其是在开发复杂项目时。以下是使用OpenAIAPI文档的指南:1.访问OpenAIAPI文
- GPT-4对话模型在客服中的应用与前景:开启智能客服新时代
Echo_Wish
前沿技术人工智能python人工智能gpt
GPT-4对话模型在客服中的应用与前景:开启智能客服新时代随着人工智能技术的迅猛发展,基于深度学习的对话模型在各个领域中得到了广泛应用。其中,GPT-4对话模型在客服系统中的应用尤为引人注目。本文将探讨GPT-4在客服中的应用与未来发展前景,并结合具体代码示例进行说明。一、GPT-4对话模型概述GPT-4(GenerativePre-trainedTransformer4)是OpenAI开发的一种
- 理论五、大模型-Prompt
伯牙碎琴
大模型prompt
一、prompt是什么在大型语言模型集成中,"prompt"是指您向模型提供的输入文本或指令,以引导模型生成特定类型的响应。这个prompt可以是一个问题、一段描述、一个任务说明,甚至是一部分对话历史记录等。通过设计和优化prompt,您可以引导模型生成符合预期的回复或完成特定的任务。在集成大型语言模型时,良好设计的prompt可以帮助模型更准确地理解您的意图,并生成更符合预期的结果。因此,对于不
- 1024基金会发起人冯雷受邀参与国家自然科学基金会《数智时代创新驱动创业理论建构与实践对话》
人工智能
11月15日,由国家自然科学基金委员会管理科学部主办,自然科学基金项目“创新驱动创业的重大理论与实践问题研究”项目组、浙大管理学院联合承办的“数智时代创新驱动创业理论建构与实践对话”会议在浙江杭州圆满落幕。大会的圆桌会议「与实践对话」环节以其深度的话题讨论、内容的前瞻性、与话题的精彩性吸引了各界的目光。1024基金会发起人冯雷受邀出席,和其他行业专家共同探讨数智时代创新驱动创业的现实问题与实践需求
- Java 大视界 -- Java 大数据文本分析与自然语言处理:从文本挖掘到智能对话
一只蜗牛儿
java大数据自然语言处理
在当今的信息化时代,数据成为了重要的资源。特别是文本数据,随处可见,如社交媒体、新闻网站、技术文档、客户反馈等,这些都包含着大量的潜在信息。因此,如何从海量的文本中提取有价值的信息,成为了大数据分析领域的重要课题。Java作为一种高效、灵活的编程语言,在大数据文本分析与自然语言处理(NLP)中发挥着至关重要的作用。本文将介绍如何利用Java开发大数据文本分析和自然语言处理(NLP)应用,带领你从文
- 大模型:LangChain技术讲解
玉成226
【大模型】langchain
一、什么是LangChain1、介绍LangChain是一个用于开发由大型语言模型提供支持的Python框架。它提供了一系列工具和组件,帮助我们将语言模型集成到自己的应用程序中。有了它之后,我们可以更轻松地实现对话系统、文本生成、文本分类、问答系统等功能。2、LangChain官网文档官网:https://python.langchain.com/docs/introduction/3、LangC
- 使用OpenAI Chat模型进行自然语言处理的实战指南
GEAWfaacc
自然语言处理easyui人工智能python
在本文中,我们将详细介绍如何利用OpenAI的Chat模型进行自然语言处理任务。我们将涵盖从API配置到实际应用的一整套流程,并提供可运行的代码示例来帮助大家上手。如果你对AI对话模型的实际应用感兴趣,那么这篇文章将非常适合你。一、技术背景介绍OpenAI的Chat模型是一类专门用于对话任务的预训练语言模型。它们可以处理多种输入类型,支持丰富的功能调用,适用于各种自然语言处理场景。从翻译到对话生成
- 大语言模型原理与工程实践:案例介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:案例介绍作者:禅与计算机程序设计艺术近年来,随着深度学习技术的快速发展,大语言模型(LargeLanguageModel,LLM)在自然语言处理领域取得了突破性进展,展现出强大的文本生成、理解和推理能力。从智能对话到机器翻译,从代码生成到诗歌创作,LLM正在深刻地改变着我们与信息交互的方式,并为人工智能应用开拓了更广阔的空间。1.背景介绍1.1大语言模型的兴起大语言模型的
- 使用VolcEngine Maas Chat进行语言模型对话的入门指南
dagGAIYD
语言模型人工智能自然语言处理python
技术背景介绍VolcEngineMaasChat模型提供了一种便捷的方式进行对话接口的设计与实现,特别是对于自然语言处理(NLP)应用。通过简单的API调用,开发者可以轻松集成强大的AI对话能力到他们的应用中。本文将指导您如何使用VolcEngineMaasChat进行对话交互。核心原理解析VolcEngineMaasChat利用大语言模型来处理和生成自然语言,在接收到用户的输入后,模型会通过分析
- 使用iFlyTek SparkLLM进行实时聊天应用开发
dagGAIYD
前端javascriptjavapython
技术背景介绍在当今的AI应用开发中,实时对话模型越来越受到重视。iFlyTek的SparkLLM为开发者提供了强大的聊天模型API,支持灵活的集成和扩展。本文将介绍如何使用SparkLLM搭建一个简单的聊天应用,包括基本的API初始化和调用,以及如何实现流式输出。核心原理解析SparkLLM是一款基于大规模语言模型的对话生成系统。它的核心在于通过自然语言理解和生成,实现人机之间的自然交流。通过使用
- 如何使用 LangChain 实现模型功能调用
dagGAIYD
langchainpython
在本文中,我们将探索如何使用LangChain框架实现语言模型(LLM)的功能调用。这是构建智能对话系统、工具调用代理等应用的核心能力。通过本文,你将能够理解模型功能调用的原理,并学习如何在代码中实现这一功能。技术背景介绍功能调用是近年来语言模型(特别是ChatGPT等对话模型)的一个重要特性。它允许开发者定义特定的工具或功能,并让模型根据上下文自动决定是否调用这些功能,以及如何调用。LangCh
- Gradio + Transformers** 实现带记忆功能的对话系统完整代码示例
大霸王龙
pythonpython开发语言
以下是一个使用Gradio+Transformers实现带记忆功能的对话系统完整代码示例,无需额外数据库依赖:importgradioasgrimportnumpyasnpfromtransformersimportAutoTokenizer,AutoModelfromtypingimportDict,List,Tuple#-----------------初始化模型---------------
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key