TensorFlow报错TypeError:unspported operand type(s)for /:’Tensor’ and’float’

TensorFlow的代码报错,信息如下:

Traceback (most recent call last):
  File "main3.py", line 120, in 
    tf.app.run()
  File "C:\Python35\lib\site-packages\tensorflow\python\platform\app.py", line 48, in run     _sys.exit(main(_sys.argv[:1] + flags_passthrough))
  File "main3.py", line 99, in main
    data_file=FLAGS.imglist_file)
  File "D:\trunk\model3.py", line 90, in __init__     self.build_model()
  File "D:\trunk\model3.py", line 124, in build_model     self.output_height, self.output_width, 3, self.is_crop)
  File "D:\trunk\utils.py", line 30, in transform_with_tf     return image/127.5 - 1
TypeError: unsupported operand type(s) for /: 'Tensor' and 'float'

查看报错的消息可能来自于tensorflow\python\kernel_tests\matmul_op_test.py文件,看来其实是没有实现这个除法,但真的是这样的话。多次运行出错的代码,发现代码有时候能顺利运行,有时候不能运行,会上述错误,或者报错如下:

Traceback (most recent call last):
  File "main3.py", line 111, in 
    tf.app.run()
  File "C:\Python35\lib\site-packages\tensorflow\python\platform\app.py", line 48, in run
    _sys.exit(main(_sys.argv[:1] + flags_passthrough))
  File "main3.py", line 92, in main
    dcgan.train(FLAGS)
  File "D: \trunk\model3.py", line 227, in train
    is_grayscale=self.is_grayscale
  File "D: \trunk\utils.py", line 37, in get_batch_image
    img = transform_with_tf(img,input_height,input_width,resize_height,resize_wi
dth, depth, is_crop)
  File "D: \trunk\utils.py", line 58, in transform_with_tf
    return image/127.5 - 1.
  File "F:\Program Files\Python35\lib\site-packages\tensorflow\python\ops\math_o
ps.py", line 820, in binary_op_wrapper
    y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
  File "F:\Program Files\Python35\lib\site-packages\tensorflow\python\framework\
ops.py", line 639, in convert_to_tensor
    as_ref=False)
  File "F:\Program Files\Python35\lib\site-packages\tensorflow\python\framework\
ops.py", line 704, in internal_convert_to_tensor
    ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
  File "F:\Program Files\Python35\lib\site-packages\tensorflow\python\framework\
constant_op.py", line 113, in _constant_tensor_conversion_function
    return constant(v, dtype=dtype, name=name)
  File "F:\Program Files\Python35\lib\site-packages\tensorflow\python\framework\
constant_op.py", line 102, in constant
    tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=
verify_shape))
  File "F:\Program Files\Python35\lib\site-packages\tensorflow\python\framework\
tensor_util.py", line 370, in make_tensor_proto
    _AssertCompatible(values, dtype)
  File "F:\Program Files\Python35\lib\site-packages\tensorflow\python\framework\
tensor_util.py", line 302, in _AssertCompatible
    (dtype.name, repr(mismatch), type(mismatch).__name__))
TypeError: Expected uint8, got 127.5 of type 'float' instead.

检查renturn image / 127.5 – 1的上一句是
image = tf.image.resize_images(image,[resize_height, resize_width])
查看tf.image.resize_images的实现源码,找到下列这段:

if all(x is not None
         for x in [new_width_const, width, new_height_const, height]) and (
             width == new_width_const and height == new_height_const):
    if not is_batch:
      images = array_ops.squeeze(images, squeeze_dims=[0])
    return images

  if method == ResizeMethod.BILINEAR:
    images = gen_image_ops.resize_bilinear(images,
                                           size,
                                           align_corners=align_corners)

意思就是如果resize设置的大小与原大小一致,就直接返回原来的数据了,而如果确实要改变图片大小,则会根据设置的参数,调用对应的改变图片大小的算法,在使用中发现,数据如果resize_images中改变了大小,那么不会报上述的错误,但是没有改变的话,就会报上述的错误。检查gen_image_ops.resize_bilinear对应源码为ResizeBilinear的操作,在resize_bilinear_op.h文件中定义如下:

template 
    struct ResizeBilinear {
      void operator()(const Device& d, typename TTypes::ConstTensor images,
                      const float height_scale, const float width_scale,
                      typename TTypes::Tensor resized_images);
    };

很显然,这里resized_images变量被转换成了float的类型,而图片一般的数据类型是uint8类型,这里在处理图片的时候,进行了隐性转换,这就导致了代码同样的数据,不同参数调用会出现报错与不报错的区别。
解决的办法其实很简单:
在return image/127.5 -1之前加上显式的类型转换tf.cast即可,例如
image = tf.cast(image, tf.float32)
最后吐槽下:
1.同样的函数,对于数据没有做统一的格式处理,这里是不是算一个BUG,因此要尽量的减少隐性的数据转换。
2.报错信息的问题,报错是不支持的Tensor和float类型的除法操作,其实际上是不支持uint8类型的Tensor与float类型的数据的除法操作(将上述报错的内容改成image/2-1是可以正常运行的),这里说明报错的信息不全,导致报错的信息容易造成误导(以偏概全的情况)。

你可能感兴趣的:(TensorFlow报错TypeError:unspported operand type(s)for /:’Tensor’ and’float’)