Spark Sort Shuffle Write

Spark sort shuffle write的过程大致如下:

  1. ShuffleMapTask的runTask()方法
override def runTask(context: TaskContext): MapStatus = {  
    // Deserialize the RDD using the broadcast variable.  
    val deserializeStartTime = System.currentTimeMillis()  
    val ser = SparkEnv.get.closureSerializer.newInstance()  
    val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](  
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)  
    _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime  
  
    metrics = Some(context.taskMetrics)  
    var writer: ShuffleWriter[Any, Any] = null  
    try {  
      val manager = SparkEnv.get.shuffleManager  
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)  
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])  
      return writer.stop(success = true).get  
    } catch {  
      case e: Exception =>  
        try {  
          if (writer != null) {  
            writer.stop(success = false)  
          }  
        } catch {  
          case e: Exception =>  
            log.debug("Could not stop writer", e)  
        }  
        throw e  
    }  
  }  

首先得到shuffleManager,shuffleManager分为三种SortShuffleManager,HashshuffleManager,UnsafeShuffleManager。这里我们focus on SortShuffleManager。得到shuffleManager后,再拿到SortShuffleWriter。在调用SortShuffleWriter的write()方法将数据写入shuffle文件。

  1. SortShuffleWriter的write()方法
override def write(records: Iterator[Product2[K, V]]): Unit = {  
    if (dep.mapSideCombine) {  
      require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!")  
      sorter = new ExternalSorter[K, V, C](  
        dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)  
      sorter.insertAll(records)  
    } else {  
      // In this case we pass neither an aggregator nor an ordering to the sorter, because we don't  
      // care whether the keys get sorted in each partition; that will be done on the reduce side  
      // if the operation being run is sortByKey.  
      sorter = new ExternalSorter[K, V, V](None, Some(dep.partitioner), None, dep.serializer)  
      sorter.insertAll(records)  
    }  
  
    // Don't bother including the time to open the merged output file in the shuffle write time,  
    // because it just opens a single file, so is typically too fast to measure accurately  
    // (see SPARK-3570).  
    val outputFile = shuffleBlockResolver.getDataFile(dep.shuffleId, mapId)  
    val blockId = ShuffleBlockId(dep.shuffleId, mapId, IndexShuffleBlockResolver.NOOP_REDUCE_ID)  
    val partitionLengths = sorter.writePartitionedFile(blockId, context, outputFile)  
    shuffleBlockResolver.writeIndexFile(dep.shuffleId, mapId, partitionLengths)  
  
    mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths)  
  }  

首先创建ExternalSorter对象,将数据插入到对象中。最后落盘(对每个Reducer生成一个数据文件和一个索引文件)。

  1. ExternalSorter的insertAll()方法
def insertAll(records: Iterator[_ <: Product2[K, V]]): Unit = {  
    // TODO: stop combining if we find that the reduction factor isn't high  
    val shouldCombine = aggregator.isDefined  
  
    if (shouldCombine) {  
      // Combine values in-memory first using our AppendOnlyMap  
      val mergeValue = aggregator.get.mergeValue  
      val createCombiner = aggregator.get.createCombiner  
      var kv: Product2[K, V] = null  
      val update = (hadValue: Boolean, oldValue: C) => {  
        if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)  
      }  
      while (records.hasNext) {  
        addElementsRead()  
        kv = records.next()  
        map.changeValue((getPartition(kv._1), kv._1), update)  
        maybeSpillCollection(usingMap = true)  
      }  
    } else if (bypassMergeSort) {  
      // SPARK-4479: Also bypass buffering if merge sort is bypassed to avoid defensive copies  
      if (records.hasNext) {  
        spillToPartitionFiles(  
          WritablePartitionedIterator.fromIterator(records.map { kv =>  
            ((getPartition(kv._1), kv._1), kv._2.asInstanceOf[C])  
          })  
        )  
      }  
    } else {  
      // Stick values into our buffer  
      while (records.hasNext) {  
        addElementsRead()  
        val kv = records.next()  
        buffer.insert(getPartition(kv._1), kv._1, kv._2.asInstanceOf[C])  
        maybeSpillCollection(usingMap = false)  
      }  
    }  
  }  

ExternalSorter里的存放数据的结构是PartitionedAppendOnlyMap对象。每写一条数据记录,都会调用maybeSpillCollection()方法来检查是否需要spill。

  1. ExternalSorter的maybeSpillCollection()方法
private def maybeSpillCollection(usingMap: Boolean): Unit = {  
  if (!spillingEnabled) {  
    return  
  }  
  
  if (usingMap) {  
    if (maybeSpill(map, map.estimateSize())) {  
      map = new PartitionedAppendOnlyMap[K, C]  
    }  
  } else {  
    if (maybeSpill(buffer, buffer.estimateSize())) {  
      buffer = if (useSerializedPairBuffer) {  
        new PartitionedSerializedPairBuffer[K, C](metaInitialRecords, kvChunkSize, serInstance)  
      } else {  
        new PartitionedPairBuffer[K, C]  
      }  
    }  
  }  
}  

estimateSize()是来估算PartitionedAppendOnlyMap对象占用的内存空间,估算的频率指数增长(为了控制估算函数的耗时)。

  1. ExternalAppendOnlyMap的spill()方法
    先按照partition排序(TimSort算法,复杂度nlog(n)),在spill到磁盘。

你可能感兴趣的:(Spark Sort Shuffle Write)