(TensorFlow)图像预处理完整样例

一:样本图片


(TensorFlow)图像预处理完整样例_第1张图片
asuna

二:处理后生成了六张图片


(TensorFlow)图像预处理完整样例_第2张图片
截图

三:代码


import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

def distort_color(image, color_ordering=0):
    if color_ordering == 0:
        image = tf.image.random_brightness(image, max_delta=32. / 255.)
        image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
        image = tf.image.random_hue(image, max_delta=0.2)
        image = tf.image.random_contrast(image, lower=0.5, upper=1.7)
    elif color_ordering == 1:
        image = tf.image.random_contrast(image, lower=0.5, upper=1.7)
        image = tf.image.random_hue(image, max_delta=0.2)
        image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
        image = tf.image.random_brightness(image, max_delta=32. / 255.)
    elif color_ordering == 2:
        image = tf.image.random_hue(image, max_delta=0.2)
        image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
        image = tf.image.random_contrast(image, lower=0.5, upper=1.7)
        image = tf.image.random_brightness(image, max_delta=32. / 255.)
    return tf.clip_by_value(image, 0.0, 1.0)
def preprocess_for_train(image, height, width, bbox):
    if bbox is None:
        bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])

    if image.dtype != tf.float32:
        image = tf.image.convert_image_dtype(image, dtype=tf.float32)

    bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(tf.shape(image), bounding_boxes=bbox)
    distort_image = tf.slice(image, bbox_begin, bbox_size)
    distort_image = tf.image.resize_images(distort_image, [height, width], method=np.random.randint(4))
    distort_image = tf.image.random_flip_left_right(distort_image)
    distort_image = distort_color(distort_image, np.random.randint(3))

    return distort_image

image_raw_data = tf.gfile.FastGFile('F:/PycharmProjects/tmp/data/a.jpg', 'rb').read()

with tf.Session() as sess:
    img_data = tf.image.decode_jpeg(image_raw_data)
    boxes = tf.constant([[[0.05, 0.05, 0.9, 0.7], [0.35, 0.47, 0.5, 0.56]]])

    for i in range(6):
        result = preprocess_for_train(img_data, 299, 299, boxes)
        plt.imshow(result.eval())
        plt.show()

你可能感兴趣的:((TensorFlow)图像预处理完整样例)