java8 in action:第七章学习:并行数据处理与性能

并行流:把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。

先做一个简单的测试,测试传统for循环,与顺序流,并行流的速度。

/**
 * 并行测试 最慢
 * @param n
 * @return
 */
public static long parallelSum(long n){
    return Stream.iterate(1L, i -> i+1)
                 .limit(n)
                 .parallel()
                 .reduce(0L, Long::sum);
}

/**
 * 顺序测试 比并行快
 * @param n
 * @return
 */
public static long sequentialSum(long n){
    return Stream.iterate(1L, i -> i+1)
                 .limit(n)
                 .reduce(0L, Long::sum);
}

/**
 * 传统for 更底层 最快
 * @param n
 * @return
 */
public static long iteativeSum(long n){
    long result=0;
    for (int i = 0; i < n; i++) {
        result+=i;
    }
    return result;
}

引入LongStream修改算法:

    /**
 * 比传统for 还快
 * @param n
 * @return
 */
public static long rangedSum(long n){
    return LongStream.rangeClosed(1, n)
                     .reduce(0L, Long::sum);
}

System.out.println("并行测试:"+measureSumPerf(Test7::parallelSum, 10000000));
    System.out.println("顺序测试:"+measureSumPerf(Test7::sequentialSum, 10000000));
    System.out.println("传统for:"+measureSumPerf(Test7::iteativeSum, 10000000));
    System.out.println("LongStream:"+measureSumPerf(Test7::rangedSum, 10000000));

并行测试:404
顺序测试:143
传统for:7
LongStream:4

理论上,并行流比顺序流要更快,事实上并不是这样的。传统for循环更接近底层,表现也不差。

几点改善并行流的方法:

1.顺序流转换成并行流并不一定快。
2.避免装箱,使用IntStream,LongStream,DoubleStream。
3.注意limit,findFirst依赖元素顺序的流,在顺序流上的性能本身就不错。
4.流的总成本。
5.数据量小的时候并行流并不一定有好的效果。
6.考虑分拆效率,ArrayList比LinkedList效率更高。range工产方法创建的原始流类型也可快速分解。
7.考虑处理流时筛选等丢弃元素等情况。
8.考虑合并步骤的代价再决定。

//流的数据源与可分解性对比
    //ArrayList  优
    //LinkedList 差
    //IntStream.range 优
    //Stream.iterate 差
    //HashSet        好
    //TreeSet        好

使用RecursiveTask分支框架

public class ForkJoinSumCalculator extends RecursiveTask {

private final long [] numbers;
private final int start;
private final int end;

//不再将任务分解为子任务的数组大小
public static final long THRESHOLD=10000;




public ForkJoinSumCalculator(long[] numbers, int start, int end) {
    this.numbers = numbers;
    this.start = start;
    this.end = end;
}



public ForkJoinSumCalculator(long [] numbers) {
    this(numbers,0,numbers.length);
}

@Override
protected Long compute() {
    int length=end-start;
    if (length<=THRESHOLD) {
        return computeSequentially();
    }
    ForkJoinSumCalculator leftTask=new ForkJoinSumCalculator(numbers,start,start+length/2);
    leftTask.fork();
    ForkJoinSumCalculator rightTask=new ForkJoinSumCalculator(numbers,start,start+length/2);
    Long rightResult=rightTask.compute();//同步执行
    Long leftResult=leftTask.join();//读取第一个线程的结果,未完成就等待
    return leftResult+rightResult;//两个任务结果组合
}



private Long computeSequentially() {
    long sum=0;
    for (int i = start; i < end; i++) {
        sum+=numbers[i];
    }
    return sum;
}

/**
 * 测试方法
 * @param n
 * @return
 */
public static long forkJoinSum(long n){
    long [] numbers=LongStream.rangeClosed(1, n).toArray();
    ForkJoinTask task=new ForkJoinSumCalculator(numbers);
    return new ForkJoinPool().invoke(task);
}

}

计算一串字符串中字符的个数,不含空格

public class WordCounter {
private static final String STR = "I am a Android engineer ! You can you up !";
private final int counter;
private final boolean lastSpace;
public WordCounter(int counter, boolean lastSpace) {
    this.counter = counter;
    this.lastSpace = lastSpace;
}

public WordCounter accumulate(Character c){
    if (Character.isWhitespace(c)) {
        return lastSpace ? this : new WordCounter(counter, true);
    }else{
        return lastSpace ? new WordCounter(counter+1, false):this;
    }
}

public WordCounter combine(WordCounter wordCounter){
    return new WordCounter(counter+wordCounter.counter, wordCounter.lastSpace);
}

public int getCounter(){
    return counter;
}

public static int countWords(Stream stream){
    WordCounter wordCounter=stream.reduce(new WordCounter(0, true),
            WordCounter::accumulate,WordCounter::combine);
    return wordCounter.getCounter();
}

public static void main(String[] args) {
    Stream stream=IntStream.range(0, STR.length()).mapToObj(STR::charAt);
    System.out.println(countWords(stream));
                            
}
}

//改成并行流测试,出现异常。

System.out.println(countWords(stream.parallel()));

Spliterator实现上面demo

public class WordCounterSpliterator implements Spliterator {

private final String str;
private int currentChar=0;



public WordCounterSpliterator(String str) {
    this.str = str;
}

/**
 * 把当前位置Character传递给Consumer
 */
@Override
public boolean tryAdvance(Consumer action) {
    action.accept(str.charAt(currentChar++));//处理当前字符串
    return currentChar  trySplit() {
    int currentSize=str.length()-currentChar;
    if (currentSize<10) {
        return null; // 解析数小于10时执行顺序处理
    }
    for (int splitPos = currentSize/2+currentChar; splitPos < str.length(); splitPos++) {
        if (Character.isWhitespace(str.charAt(splitPos))) {
            Spliterator spliterator=new WordCounterSpliterator(str.substring(currentChar, splitPos));
            currentChar=splitPos;//将起始位置设为裁缝位置
            return spliterator;
        }
    }
    return null;
}

/**
 * 总长度与当前位置的差
 */
@Override
public long estimateSize() {
    return str.length()-currentChar;
}

/**
 * ORDERED 顺序
 * SIZED   estimateSize返回值精确
 * SUBSIZED  trySplit创建的其他Spliterator 大小确切
 * NONNULL   不为null
 * IMMUTABLE 不可变(String本身不可变)
 */
@Override
public int characteristics() {
    return ORDERED+SIZED+SUBSIZED+NONNULL+IMMUTABLE;
}

public static int countWords(Stream stream){
    WordCounter wordCounter=stream.reduce(new WordCounter(0, true),
            WordCounter::accumulate,WordCounter::combine);
    return wordCounter.getCounter();
}

public static void main(String[] args) {
    String str="Characteristic value signifying that an encounter order is defined for elements.";
    Spliterator spliterator=new WordCounterSpliterator(str);
    Stream stream=StreamSupport.stream(spliterator, true);
    
    System.out.println(countWords(stream));
    
}
}

好了,就到这里了。

你可能感兴趣的:(java8 in action:第七章学习:并行数据处理与性能)