Leetcode - Palindrome Partitioning II

这道题目我采用了 divide and conquer + DP
但是超时了。先上我的code
My code:

public class Solution {
    public int minCut(String s) {
        if (s == null || s.length() == 0) {
            return 0;
        }
        
        int n = s.length();
        int[][] cache = new int[n][n];
        initialize(s, cache);
        return helper(0, n - 1, s, cache);
    }
    
    private int helper(int left, int right, String s, int[][] cache) {
        if (cache[left][right] >= 0) {
            return cache[left][right];
        }
        else {
            int ans = Integer.MAX_VALUE;
            for (int i = left; i < right; i++) {
                ans = Math.min(ans, 1 + helper(left, i, s, cache) + helper(i + 1, right, s, cache));
                if (ans == 1) {
                    break;
                }
            }
            cache[left][right] = ans;
            return ans;
        }
    }
    
    private void initialize(String s, int[][] cache) {
        int n = cache.length;
        for (int i = 0; i < n; i++) {
            cache[i][i] = 0;
            int begin = i - 1;
            int end = i + 1;
            while (begin >= 0 && end < n) {
                if (cache[begin + 1][end - 1] == -2) {
                    cache[begin][end] = -2;
                }
                else if (s.charAt(begin) != s.charAt(end)) {
                    cache[begin][end] = -2;
                }
                else {
                    cache[begin][end] = 0;
                }
                begin--;
                end++;
            }
            
            begin = i;
            end = i + 1;
            while (begin >= 0 && end < n) {
                if (begin + 1 <= end - 1 && cache[begin + 1][end - 1] == -2) {
                    cache[begin][end] = -2;
                }
                else if (s.charAt(begin) != s.charAt(end)) {
                    cache[begin][end] = -2;
                }
                else {
                    cache[begin][end] = 0;
                }
                begin--;
                end++;
            }
        }
    }
    
    public static void main(String[] args) {
        Solution test = new Solution();
        String s = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
        int ret = test.minCut(s);
        System.out.println(ret);
    }
}

recursion DP + divide and conquer

我采取了多种cache策略 和剪枝

  1. 将 string s 彻底扫描一遍,
    cache[i][j] = -2 -> not palindrome
    cache[i][j] = 0 -> is panlindrome
    耗时: O(n^2)

  2. 当 left +1 == right and s[left, right] 非 palindrome 时,直接返回1,只能一刀切,没必要继续recursion

  3. 重量级剪枝
    当 ans = 1 时,没必要继续剪枝,这一定是最小cut。直接break

采取了这些策略后,速度快了很多。
但还是 TLE
这个例子:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

我写程序测试了下,跑的时间是,200ms。我同学的iteration 时间是,27ms
我在想,为什么会满这么多呢!!明明已经精简到极限了啊!
后来测试了下,栈的长度。
我的整个recursion 过程,栈的个数达到了 4000万 + 个!!
光凭这些入栈出栈的操作,就会浪费大量的时间!
而 iteration dp, 却没有这些事,所以速度更快。

于是开始考虑 iteration 做法。

My code:

public class Solution {
    public int minCut(String s) {
        if (s == null || s.length() == 0) {
            return 0;
        }
        
        int n = s.length();
        int[] mcut = new int[n];
        boolean[][] pal = new boolean[n][n];
        initialize(pal, s);
        for (int i = 1; i < n; i++) {
            if (pal[0][i]) {
                mcut[i] = 0;
            }
            else {
                int min = mcut[i - 1] + 1;
                for (int j = i - 1; j >= 1; j--) {
                    if (pal[j][i]) {
                        min = Math.min(min, mcut[j - 1] + 1);
                    }
                }
                mcut[i] = min;
            }
        }
        
        return mcut[n - 1];
    }
    
    private void initialize(boolean[][] pal, String s) {
        for (int i = 0; i < s.length(); i++) {
            int begin = i;
            int end = i;
            while (begin >= 0 && end < s.length()) {
                if (s.charAt(begin) != s.charAt(end)) {
                    break;
                }
                else {
                    pal[begin][end] = true;
                    begin--;
                    end++;
                }
            }
            
            begin = i;
            end = i + 1;
            while (begin >= 0 && end < s.length()) {
                if (s.charAt(begin) != s.charAt(end)) {
                    break;
                }
                else {
                    pal[begin][end] = true;
                    begin--;
                    end++;
                }
            }
        }
    }
}

reference:
https://discuss.leetcode.com/topic/32575/easiest-java-dp-solution-97-36

iteration DP
int[] mcut[i] 表示 [0, i] 的substring 需要的最小cut数
boolean[][] pal[i][j] 表示 substring [i, j] 是否为 palindrome
s = [0, ..., j] [i, ...]
首先判断 s[0, i] 是否为 palindrome 如果是,直接 mcut[i] = 1
如果不是,则开始循环:
如果 [j, i] 是 palindrom
则 min = Math.min(min, mcut[j - 1] + 1);
以此类推

总结:
昨天做 burst ballon 的时候,就是这种 divide and conquer + DP 解决了问题。今天想如法炮制,没想到还是不行。
究其原因,还是recursion 的栈太多了。得用Iteration
但是recursion + cache 比较容易想,而 iteration DP的推导式太难想了。

Anyway, Good luck, Richardo! -- 08/20/2016

My code:

public class Solution {
    public int minCut(String s) {
        if (s == null || s.length() == 0) {
            return 0;
        }
        
        int len = s.length();
        int[] cut = new int[len];
        boolean[][] pal = new boolean[len][len];
        for (int i = 0; i < len; i++) {
            int min = i;
            for (int j = 0; j <= i; j++) {
                if (s.charAt(j) == s.charAt(i) && (j + 1 > i - 1 || pal[j + 1][i - 1])) {
                    pal[j][i] = true;
                    min = (j == 0 ? 0 : Math.min(min, cut[j - 1] + 1));
                }
            }
            cut[i] = min;
        }
        
        return cut[len - 1];
    }
}

reference:
https://discuss.leetcode.com/topic/32575/easiest-java-dp-solution-97-36/2

Anyway, Good luck, Richardo! -- 10/19/2016

你可能感兴趣的:(Leetcode - Palindrome Partitioning II)