- 【AWS入门】AWS云计算简介
Jackson@ML
aws亚马逊云科技云计算云计算aws亚马逊云科技
【AWS入门】AWS云计算简介ABriefIntroductiontoAWSCloudComputingByJackson@ML什么是云计算?云计算能干什么?我们如何利用云计算?云计算如何实现?带着一系列问题,我将做一个普通布道者,引领广大读者,针对AWS各项云技术和服务,逐步进入云计算赋能千行百业的神奇世界。本文简要介绍AWS提供的云计算,希望对读者有所帮助。1.云计算云计算通过互联网按需提供I
- 附下载 | 2024 OWASP Top 10 基础设施安全风险.pdf
安全方案
OWASP基础设施安全
《2024OWASPTop10基础设施安全风险》报告,由OWASP(开放网络应用安全项目)发布,旨在提升企业和组织对基础设施安全风险、威胁与漏洞的意识,并提供高质量的信息和最佳实践建议。报告列出了2024年最重要的10大基础设施安全风险,并通过案例分析展示了这些风险的实际影响。一、报告背景与目的背景:2024企业信息安全峰会以“直面信息安全挑战,创造最佳实践”为主题,聚焦信息安全技术与实践,致力于
- AI技术学习笔记系列001:FastLanguageModel.get_peft_model 函数各参数的详细解释
新说一二
人工智能学习笔记
以下是关于代码中FastLanguageModel.get_peft_model函数各参数的详细解释,以及企业实际微调时的选择考量:参数详解及对微调的影响1.r=32(秩)作用:控制LoRA适配器的低秩矩阵的维度(秩),直接影响可训练参数数量。影响:r越大:适配器表达能力更强,能捕捉更复杂的任务特征,但可能导致过拟合(尤其数据量少时),训练时间和显存占用增加。r越小:参数量少,训练更快,显存占用低
- Python实现大麦网抢票的四大关键技术点解析
小白学大数据
亿牛云代理pythonpython开发语言爬虫数据挖掘程序人生
前言随着互联网的普及和发展,线上购票已经成为人们生活中不可或缺的一部分。然而,在抢购热门演出门票时,往往会遇到抢票难、抢票快的问题,有时候一秒钟的延迟就意味着与心仪的演出擦肩而过。为了解决这个问题,技术爱好者们开始探索利用Python多线程技术来提高抢票效率。本文将介绍Python实现大麦网抢票的四大关键技术点,帮助读者了解抢票脚本的核心原理,并通过示例代码详细说明实现过程。1.网页解析技术大麦网
- 计算机毕设论文灵魂模块:系统架构图设计终极指南(附资料)
计算机毕业设计小帅
课程设计毕业设计java系统架构
【关注我,毕业设计不迷茫】|6年辅导经验|帮助1200+学子顺利毕业大家好,我是程序员小帅,一名专注于计算机毕业设计全流程辅导的技术博主。专注JavaWeb,我深耕毕设领域6年,累计输出1200+原创项目案例,辅导成功率接近100%。如果你正在为选题、代码、论文或答辩发愁,这里能给你最落地的解决方案!为什么架构图是毕设的灵魂?1️⃣展示系统思维:用一张图说清技术选型逻辑2️⃣设计说明书:开发前必须
- YOLOv5+UI界面在车辆检测中的应用与实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪人工智能
1.引言随着智能交通系统(ITS)的快速发展,车辆检测已成为计算机视觉领域的重要研究方向。车辆检测技术广泛应用于交通流量监控、车辆违章抓拍、无人驾驶等场景中。近年来,深度学习技术的突破,特别是卷积神经网络(CNN)的崛起,使得目标检测技术取得了显著进展。其中,YOLO(YouOnlyLookOnce)系列模型以其高效的实时检测能力和出色的性能成为车辆检测领域的首选方法之一。在本文中,我们将基于YO
- DeepSeek:技术教育领域的AI变革者——从理论到实践的全面解析
量子纠缠BUG
DeepSeekDeepSeek部署AI人工智能python
一、技术教育为何需要DeepSeek?在数字化转型的浪潮下,技术教育面临着知识更新快、实践门槛高、个性化需求强三大核心挑战。传统的教学模式难以满足开发者快速掌握前沿技术、构建复杂系统能力的需求。DeepSeek作为国产开源大模型的代表,凭借其推理能力、多模态支持与低成本部署的特性,正在为技术教育带来突破性解决方案。二、DeepSeek赋能技术教育的核心技术优势1.推理能力驱动深度学习思维链(CoT
- 【人工智能基础2】机器学习、深度学习总结
roman_日积跬步-终至千里
人工智能习题人工智能机器学习深度学习
文章目录一、人工智能关键技术二、机器学习基础1.监督、无监督、半监督学习2.损失函数:四种损失函数3.泛化与交叉验证4.过拟合与欠拟合5.正则化6.支持向量机三、深度学习基础1、概念与原理2、学习方式3、多层神经网络训练方法一、人工智能关键技术领域基础原理与逻辑机器学习机器学习基于数据,研究从观测数据出发寻找规律,利用这些规律对未来数据进行预测。基于学习模式,机器学习可以分为监督、无监督、强化学习
- 一文搞懂 AI Agent 与 AI 大模型的区别
a小胡哦
人工智能ManusAiagent
在人工智能蓬勃发展的当下,新术语和新技术层出不穷。AIAgent和AI大模型便是其中的“明星”,但不少人对它们的区别感到困惑。今天,我们就以Manus这类AIAgent为例,深入剖析AIAgent与一般AI大模型的不同之处。Manus:Manus定义与核心能力AI大模型AI大模型是基于深度学习架构,通过海量数据训练得到的复杂模型,像GPT-4、文心一言等。它们具备强大的知识储备和语言理解生成能力,
- 《零代码调用最强开源模型DeepSeek-Lite:15分钟实战案例解析》
煜bart
人工智能
一、突破性技术揭秘DeepSeek-Lite-16K作为当前中文开源模型的性能冠军,在CLUE评测中超越GPT-4的表现令人震惊。该模型采用独特的动态窗口技术,支持最大16ktokens的上下文处理能力,在智能客服、法律文书处理、医疗诊断等场景展现惊人潜力。##二、三步极速接入指南```python#实战代码片段(基于HuggingFace平台)fromtransformersimportAuto
- 基于python+mysql+vue的医院门诊管理系统
自不量力的A同学
mysql
主要使用技术环境需要1.运行环境:python3.82.IDE环境:pycharm+mysql5.73.数据库工具:Navicat154.硬件环境:windows10/118G内存以上;或者MacOS;5.数据库:MySql5.7版本;技术栈后端:python+django前端:vue+CSS+JavaScript+jQuery+antdesign代码结构server目录是后端代码web目录是前端
- 基于python的家政预约管理系统源码+运行步骤
冷琴1996
Python系统设计python开发语言
功能介绍平台采用B/S结构,后端采用主流的Python语言进行开发,前端采用主流的Vue.js进行开发。学习技术问题可以留言。整个平台包括前台和后台两个部分。前台功能包括:首页、详情页、用户中心、家政入驻模块。后台功能包括:总览、家政管理、分类管理、标签管理、评论管理、用户管理、运营管理、日志管理、系统信息模块。源码地址https://github.com/geeeeeeeek/python_ji
- 基于python+django+vue.js开发的健身房管理系统源码+运行步骤
冷琴1996
Python系统设计pythondjangovue.js
功能介绍平台采用B/S结构,后端采用主流的Python语言进行开发,前端采用主流的Vue.js进行开发。技术学习中的问题可以留言。功能包括:教练管理、会员管理、场地管理、设备管理、用户管理、日志管理、系统信息模块。源码地址https://github.com/geeeeeeeek/python_fitness演示地址http://fitness.gitapp.cn演示帐号:用户名:admin123
- 淘宝客劫持插件功能演示解析
喵喵蜜
本文还有配套的精品资源,点击获取简介:淘宝客劫持插件通过改变用户购物链接为带有推广ID的链接,使推广者在用户购买后获得佣金。演示内容包括插件安装、链接转换机制、用户无感知操作、安全性与隐私、收益追踪、兼容性测试、源码说明、许可证和法律合规性,以及教程示例。该插件是一种网络营销工具,需在用户体验和合规性间找到平衡,对于推广者和浏览器扩展开发者具有实用价值。1.淘宝客劫持插件功能概述在电商行业竞争日益
- 【商城实战(23)】筑牢安全防线,防范常见漏洞
奔跑吧邓邓子
商城实战安全商城实战uniappSpringBootElementplusSQL注入CSRF
【商城实战】专栏重磅来袭!这是一份专为开发者与电商从业者打造的超详细指南。从项目基础搭建,运用uniapp、ElementPlus、SpringBoot搭建商城框架,到用户、商品、订单等核心模块开发,再到性能优化、安全加固、多端适配,乃至运营推广策略,102章内容层层递进。无论是想深入钻研技术细节,还是探寻商城运营之道,本专栏都能提供从0到1的系统讲解,助力你打造独具竞争力的电商平台,开启电商实战
- 数据分析面试全攻略:项目经验篇
代码CC
数据分析(包括各种面试题)数据分析面试python
引言:为什么项目经验是数据分析面试的“敲门砖”?在数据分析岗位的面试中,项目经验是最核心的竞争力证明。HR视角:80%的面试官会通过项目细节判断候选人的真实能力技术视角:项目是数据清洗、建模分析、业务落地的综合体现误区警示:单纯罗列工具名称(如Python/SQL)≠具备实战能力本文将系统讲解如何用STAR法则包装项目、如何选择高含金量数据集、以及如何通过和鲸社区快速积累实战经验。文末提供10个可
- HarmonyOS第21天:解锁分布式技术,开启跨设备协同新体验
老三不说话、
HarmonyOS开发harmonyos分布式华为
一、HarmonyOS分布式技术:开启万物互联新时代在物联网蓬勃发展的今天,设备之间的互联互通不再是遥不可及的梦想,而是真切融入日常生活的现实。从智能家居设备的联动控制,到智能办公场景中的高效协作,再到智能出行中的无缝体验,我们越来越依赖设备之间的协同工作。HarmonyOS的分布式技术,正是这股万物互联浪潮中的关键力量,它打破了设备之间的界限,为用户带来了前所未有的跨设备协同体验,让多设备联动从
- 一周热点:微软攻克语音输入、文本输出难题-Phi-4-multimodal
数据分析能量站
机器学习人工智能
微软Phi-4-multimodal模型是人工智能领域的一个重要进展,它标志着微软在多模态人工智能技术上的突破。以下是对该模型的详细解释:模型概述微软Phi-4-multimodal是一个能够同时处理文本、图像和语音的多模态大型语言模型。它通过创新的架构和训练方法,实现了在不同模态之间的无缝交互,为用户提供更自然、更智能的交互体验。模型架构该模型采用多模态Transformer架构,通过LoRA(
- Python-Django毕业设计医院门诊管理信息系统(程序+Lw)
Python计算机毕设程序源码_
pythondjango课程设计
该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程项目运行环境配置:Pychram社区版+python3.7.7+Mysql5.7+HBuilderX+listpip+Navicat11+Django+nodejs。项目技术:django+python+Vue等等组成,B/S模式+pychram管理等等。环境需要1.运行环境:最好是python3.7.7,我们在这个版本上开发的。其他版
- 清华大学《DeepSeek赋能家庭教育》深度解析:AI如何重塑现代家庭教育模式
硅基打工人
AI人工智能经验分享大数据开源语言模型
引言:家庭教育的困境与AI的破局在数字化与智能化浪潮下,家庭教育面临多重挑战:家长教育能力不足、教育资源分配不均、亲子沟通效率低下、个性化需求难以满足等。清华大学发布的《DeepSeek赋能家庭教育》系列报告(共56页)提出了一种基于人工智能的解决方案,通过深度学习平台DeepSeek,为家庭教育注入科技动能。本文将从技术原理、核心功能、应用场景、伦理安全及未来展望等多维度展开分析。一、DeepS
- 小语言模型(SLM)技术解析:如何在有限资源下实现高效AI推理
硅基打工人
AI人工智能语言模型自然语言处理
引言:为什么小语言模型(SLM)是2025年的技术焦点?2025年,人工智能领域正经历一场“由大变小”的革命。尽管大语言模型(LLM)如GPT-4、GeminiUltra等在复杂任务中表现惊艳,但其高昂的算力成本、庞大的参数量(通常超过千亿)和依赖云端的特性,使得实际落地面临诸多瓶颈。**小语言模型(SmallLanguageModel,SLM)**应运而生,凭借其高效性、经济性和本地化部署能力,
- Adobe Firefly 技术浅析(三):GANs 的改进
爱研究的小牛
AIGC——图像AIGC—生成对抗网络AIGC机器学习深度学习
生成式对抗网络(GANs)在图像生成领域取得了显著的进展,但原始的GANs在训练稳定性、生成质量以及多样性方面存在一些挑战。AdobeFirefly在其图像生成技术中采用了多种改进的GANs方法,以提高生成图像的质量和多样性。1.条件生成式对抗网络(cGANs)1.1基本原理条件生成式对抗网络(cGANs)通过引入额外的条件信息(如类别标签、文本描述等),使得生成器能够根据这些条件生成特定类型的图
- 用Python打造智能姓名生成器:从数据分离到AI赋能
灏瀚星空
python人工智能开发语言经验分享笔记
用Python打造智能姓名生成器:从数据分离到AI赋能目录项目概述与功能清单环境准备与工具选择项目架构设计核心代码实现AI古文解析模块交互界面开发使用示例与效果展示扩展思路与优化建议1.项目概述与功能清单核心功能数据管理CSV文件存储姓氏/名字库支持用户导入/导出数据交互界面姓名生成与实时预览已选名单管理(增删改查)排除词输入框(黑名单过滤)AI赋能从古文中提取字词及注解自动生成姓名寓意解析扩展功
- HarmonyOS NEXT 开发环境搭建与金融理财类APP开发指南
harmonyos
引言随着华为鸿蒙操作系统HarmonyOSNEXT的推出,越来越多的开发者开始关注并投入到这一新生态系统的开发中。本文将详细介绍如何在HarmonyOSNEXT上搭建开发环境,并通过一个金融理财类财务记账APP的示例,展示如何进行应用程序的技术开发。开发环境搭建首先,开发者需要准备一台运行Windows或macOS的计算机,并确保安装了最新版本的JavaDevelopmentKit(JDK)。接下
- Nginx负载均衡策略详解:从轮询到智能分发,打造高可用服务架构
weixin_42587823
linux云计算nginx负载均衡架构
Nginx负载均衡策略详解:从轮询到智能分发,打造高可用服务架构一、负载均衡的核心价值当单台服务器无法承载高并发流量时,负载均衡通过将请求分发到多台服务器,实现:横向扩展:突破单机性能瓶颈故障隔离:自动剔除异常节点动态调度:根据策略优化资源利用率二、Nginx原生负载均衡策略1.轮询(RoundRobin)配置示例:upstreambackend{server192.168.1.10:8080;s
- 【数据分享】1999—2023年地级市地方一般公共预算收支状况数据(科学技术支出/教育支出等)
小鲨鱼-立方数据学社
数据分享中国城市统计年鉴地方一般公共预算收支状况立方数据学社
在之前的文章中,我们分享过基于2000-2024年《中国城市统计年鉴》整理的1999-2023年地级市的人口相关数据、染物排放和环境治理相关数据、房地产投资情况和商品房销售面积相关指标数据和社会消费品零售总额和年末金融机构存贷款余额(均可查看之前的文章获悉详情)!本次我们分享的是从2000—2024年《中国城市统计年鉴》整理的地级市一般公共预算收支状况!数据年份为1999-2023年,对于数据年份
- AI开拓者指南:GenAI产品应用TIPs——从采购到使用(采购篇)
ai开发
AI浪潮愈发澎湃的当下,生成式人工智能技术已成为企业创新与效率提升的重要工具。企业对生成式人工智能产品(以下简称为“GenAI产品”)的应用需求日益增长,其应用场景也愈发多样化:开展营销活动的过程中利用AI生成创意文案和视觉设计素材,极大地缩短了创作周期并降低了成本;使用AI客服机器人处理客户咨询,显著地提高了客户满意度和响应速度;使用AI还可以为客户提供个性化的产品推荐,提高销售转化率等等。然而
- 数据分析:数据的存储结构、数据类型、数据集成技术、存储模型、查询语言、API、驱动器等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介数据分析是一个复杂的工程,需要用到多个数据库、数据表、数据文件等数据集成资源。不同的数据集成环境(如分布式系统、异构数据库)会影响数据分析的效率和效果。在进行数据分析时,首先要确定数据集成方案、选择合适的数据模型和索引策略,以及评估各种解决方案之间的优劣。因此,掌握数据的存储结构、数据类型、数据集成技术、存储模型、查询语言、API、驱动器等关键信息对数据分析工作
- 4A架构:企业数字化转型的核心引擎
ronshi
架构架构
4A架构,即业务架构、应用架构、数据架构和技术架构的统称,是构建数字化企业的基石。这四个方面相互关联、相互支撑,共同构成了企业信息化建设的完整体系。一、业务架构:明确方向与目标业务架构是数字化转型的起点,通过对企业价值流和业务目标的梳理,为后续的架构设计提供指导。企业需明确战略定位,识别核心业务流程,并优化组织结构,以确保数字化转型与业务目标相契合。二、应用架构:实现业务能力应用架构将业务架构转化
- Chitu:清华核弹级开源!推理引擎3倍提速+50%省卡,国产芯片告别英伟达绑架
蚝油菜花
每日AI项目与应用实例开源开源人工智能
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->丰富的AI工具库->每日更新->尽在微信公众号->搜一搜:蚝油菜花“还在为天价H100排队?清华让国产芯片跑出3倍英伟达性能!”大家好,我是蚝油菜花。当科技巨头用天价H100显卡筑起算力高墙时,中国团队用
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$