OkHttp源码解析

随着Google抛弃HttpClient和Volley的逐步没落,OkHttp越来越受到开发者的青睐。
高楼大厦也是由一砖一瓦堆积而成,OKHttp这个牛逼的框架也是如此,也是由最基础的代码按照一定的结构设计开发而成。那么今天我们就透过现象来看本质,一点点的来分析OkHttp的原理。
文章基于最新的3.9.0版本进行分析,如果存在描述不正的地方,还请各位看官指正。

我们将分两个部分,分别讲解同步和异步请求。

1.同步请求

示例

/**
 * 同步get请求。
 *
 * @param url 请求的URL
 * @return 请求的返回结果
 * @throws IOException 中间可能产生的异常
 */
public static String get(String url) throws IOException {
        //1.实例化一个OkHttpClient实例
        //好像也只能通过这个唯一的构造方法来创建对象了,我们可以考虑在应用中将其设计为单例使用
        //也可以通过Builder模式创建
        OkHttpClient client = new OkHttpClient();

        //2.构造一个Request请求
        //这几乎是最简单的请求构造方法
        Request request = new Request.Builder()
                .url(url)
                .build();

        //3.执行一个同步请求,得到返回结果
        Response response = client.newCall(request).execute();

        //4.处理返回结果
        if(response.isSuccessful()){
            return response.body().string();
        }else{
            throw new IOException("Unexpected code:"+response.code());
        }
    }

示例分析

OkHttpClient client = new OkHttpClient();

看似简单的一句代码,其实内部做了很多的操作。

1.OkHttpClient构造


 //外部使用时唯一可访问的构造方法
 public OkHttpClient() {
    this(new Builder());
  }

  OkHttpClient(Builder builder) {
    this.dispatcher = builder.dispatcher;
    this.proxy = builder.proxy;
    this.protocols = builder.protocols;
    this.connectionSpecs = builder.connectionSpecs;
    this.interceptors = Util.immutableList(builder.interceptors);
    this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
    this.eventListenerFactory = builder.eventListenerFactory;
    this.proxySelector = builder.proxySelector;
    this.cookieJar = builder.cookieJar;
    this.cache = builder.cache;
    this.internalCache = builder.internalCache;
    this.socketFactory = builder.socketFactory;

    boolean isTLS = false;
    for (ConnectionSpec spec : connectionSpecs) {
      isTLS = isTLS || spec.isTls();
    }

    if (builder.sslSocketFactory != null || !isTLS) {
      this.sslSocketFactory = builder.sslSocketFactory;
      this.certificateChainCleaner = builder.certificateChainCleaner;
    } else {
      X509TrustManager trustManager = systemDefaultTrustManager();
      this.sslSocketFactory = systemDefaultSslSocketFactory(trustManager);
      this.certificateChainCleaner = CertificateChainCleaner.get(trustManager);
    }

    this.hostnameVerifier = builder.hostnameVerifier;
    this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
        certificateChainCleaner);
    this.proxyAuthenticator = builder.proxyAuthenticator;
    this.authenticator = builder.authenticator;
    this.connectionPool = builder.connectionPool;
    this.dns = builder.dns;
    this.followSslRedirects = builder.followSslRedirects;
    this.followRedirects = builder.followRedirects;
    this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
    this.connectTimeout = builder.connectTimeout;
    this.readTimeout = builder.readTimeout;
    this.writeTimeout = builder.writeTimeout;
    this.pingInterval = builder.pingInterval;

    if (interceptors.contains(null)) {
      throw new IllegalStateException("Null interceptor: " + interceptors);
    }
    if (networkInterceptors.contains(null)) {
      throw new IllegalStateException("Null network interceptor: " + networkInterceptors);
    }
  }

很明显OkHttpClient的构造使用了设计模式中的[Builder模式]。
关于Builder模式,在此不再描述,相信大家应该对此比较熟悉。

2.OkHttpClient.Builder构造

public Builder() {
      dispatcher = new Dispatcher();
      protocols = DEFAULT_PROTOCOLS;
      connectionSpecs = DEFAULT_CONNECTION_SPECS;
      eventListenerFactory = EventListener.factory(EventListener.NONE);
      proxySelector = ProxySelector.getDefault();
      cookieJar = CookieJar.NO_COOKIES;
      socketFactory = SocketFactory.getDefault();
      hostnameVerifier = OkHostnameVerifier.INSTANCE;
      certificatePinner = CertificatePinner.DEFAULT;
      proxyAuthenticator = Authenticator.NONE;
      authenticator = Authenticator.NONE;
      connectionPool = new ConnectionPool();
      dns = Dns.SYSTEM;
      followSslRedirects = true;
      followRedirects = true;
      retryOnConnectionFailure = true;
      connectTimeout = 10_000;
      readTimeout = 10_000;
      writeTimeout = 10_000;
      pingInterval = 0;
    }

    public OkHttpClient build() {
      return new OkHttpClient(this);
    }

Builder是OkHttpClient的静态内部类,主要是初始化一些OkHttpClient需要使用到的属性,上述代码是一些默认设置。
当然,你也可以根据自己的实际需求自定义设置这些参数值。

3.Request构造

Request的构造同样采用了[Builder模式],在此不再赘述。


    //2.构造一个Request请求
    //这几乎是最简单的请求构造方法
    Request request = new Request.Builder()
        .url(url)
        .build();

  //因为Request构造方法是包级私有的,所以不能直接new对象
  //我们可以通过Builder来构造Request对象
  Request(Builder builder) {
    this.url = builder.url;
    this.method = builder.method;
    this.headers = builder.headers.build();
    this.body = builder.body;
    this.tag = builder.tag != null ? builder.tag : this;
  }


  //class Builder
  public static class Builder {
    HttpUrl url;
    String method;
    Headers.Builder headers;
    RequestBody body;
    Object tag;

    public Builder() {
      this.method = "GET";
      this.headers = new Headers.Builder();
    }

    Builder(Request request) {
      this.url = request.url;
      this.method = request.method;
      this.body = request.body;
      this.tag = request.tag;
      this.headers = request.headers.newBuilder();
    }

    public Request build() {
      if (url == null) throw new IllegalStateException("url == null");
      return new Request(this);
    }
}

4.RealCall:真正的请求执行者

真正的流程开始执行是从生成RealCall开始的,RealCall也是真正的请求执行者。


//3.执行一个同步请求,得到返回结果
Response response = client.newCall(request).execute();

public Call newCall(Request request) {
    return RealCall.newRealCall(this, request, false /* for web socket */);
  }

private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
    this.client = client;
    this.originalRequest = originalRequest;
    this.forWebSocket = forWebSocket;
    //创建了失败重定向拦截器
    this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
  }

  static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
    // Safely publish the Call instance to the EventListener.
    RealCall call = new RealCall(client, originalRequest, forWebSocket);
    call.eventListener = client.eventListenerFactory().create(call);
    return call;
  }

以上代码描述了OkHttpClient生成RealCall的流程。

5. RealCall.execute方法

RealCall.execute是请求流程真正开始执行的入口,下面我们来分析下代码:

 @Override public Response execute() throws IOException {
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    captureCallStackTrace();
    eventListener.callStart(this);
    try {
      client.dispatcher().executed(this);
      Response result = getResponseWithInterceptorChain();
      if (result == null) throw new IOException("Canceled");
      return result;
    } catch (IOException e) {
      eventListener.callFailed(this, e);
      throw e;
    } finally {
      client.dispatcher().finished(this);
    }
  }

这段代码主要做了下面的事情:

  • 检查该请求是否已经执行,如果已经执行则直接抛出异常。每个call只能执行一次,如果需要同样的请求,可以调用clone方法克隆。

  • 事件开始回调。

  • 利用client.dispatcher().executed(this)来进行状态标记(标记该请求正在执行中),dispatcher是刚才看到的OkHttpClient.Builder 的成员之一。

  • 调用getResponseWithInterceptorChain()函数获取HTTP返回结果,从函数名可以看出,这一步还会进行一系列“拦截”操作。

  • 出现异常时回调通知。

  • 最后通知分发器处理结束。

6. RealCall.getResponseWithInterceptorChain

该接口是真正发起网络请求,解析返回处理结果。
关于代码中出现的各种拦截器,文章后面会进行详细分析和描述。

 Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    // 构造拦截器栈
    List interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
        originalRequest, this, eventListener, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());

    return chain.proceed(originalRequest);
  }
  • 添加拦截器
 interceptors.addAll(client.interceptors());

添加client配置的拦截器,默认值为空。
可根据需要添加自定义的拦截器(比如日志拦截器,拦截器的实现我们可以参照OkHttp内置的拦截器),注意添加的自定义拦截器的优先级较高。

  • 添加重试拦截器
 interceptors.add(retryAndFollowUpInterceptor);

retryAndFollowUpInterceptor为负责失败重试、重定向的拦截器,创建RealCall时生成的。

  • 添加桥接拦截器
interceptors.add(new BridgeInterceptor(client.cookieJar()));

该拦截器负责将用户构造的请求转换为发送到服务器的请求,把服务器的响应转换为用户响应。

  • 添加缓存拦截器
interceptors.add(new CacheInterceptor(client.internalCache()));

该拦截器负责读取缓存、更新缓存内容。

  • 添加连接拦截器
interceptors.add(new ConnectInterceptor(client));

该拦截器负责与服务器建立连接。

  • 添加网络拦截器
if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
}

该拦截器在由client配置,默认为空,可根据需要进行配置。

  • 添加请求拦截器
interceptors.add(new CallServerInterceptor(forWebSocket));

该拦截器负责向服务器发送请求数据、从服务器读取响应数据。

  • 链式处理请求
return chain.proceed(originalRequest);

开启链式处理请求,并返回结果。

请求处理分析

在上述的章节中,我们已经分析了请求是如何构造的,以及其中牵涉到的拦截器和实际处理请求的一些对象,接下来我们将紧接上节内容分析OkHttp链式处理流程,让你对请求的处理过程有一个更深层次的了解。

1.RealInterceptorChain

先看下拦截器链处理流程代码:

 public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
      RealConnection connection) throws IOException {
    // 判断拦截器是否在拦截器栈内
    if (index >= interceptors.size()) throw new AssertionError();

    calls++;

    // If we already have a stream, confirm that the incoming request will use it.
    // 如果存在了流,那么确保即将来的reuquest会使用它,而不是重新请求一次。
    if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) {
      throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
          + " must retain the same host and port");
    }

    // If we already have a stream, confirm that this is the only call to chain.proceed().
    // 如果已经存在流,那么确保proceed处理的是唯一的call
    if (this.httpCodec != null && calls > 1) {
      throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
          + " must call proceed() exactly once");
    }

    // Call the next interceptor in the chain.
    // 根据责任链模式构造下一个拦截器链
    RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
        connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
        writeTimeout);
    // 获取当前处理请求的拦截器
    Interceptor interceptor = interceptors.get(index);
    // 拦截请求,并处理请求
    Response response = interceptor.intercept(next);

    // Confirm that the next interceptor made its required call to chain.proceed().
    if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
      throw new IllegalStateException("network interceptor " + interceptor
          + " must call proceed() exactly once");
    }

    // Confirm that the intercepted response isn't null.
    //  确保返回结果不为空    
    if (response == null) {
      throw new NullPointerException("interceptor " + interceptor + " returned null");
    }

     // 确保返回结果的内容不为空
    if (response.body() == null) {
      throw new IllegalStateException(
          "interceptor " + interceptor + " returned a response with no body");
    }

    return response;
  }

这段代码不长,却是OkHttp的核心所在,也是链式请求的经典代码(可参考责任链模式的描述)。
至于这段代码是什么意思,代码里的注释已经写的很清楚了,在此就不再赘述了,我们主要分析下链式调用流程。

     // Call the next interceptor in the chain.
     // 根据责任链模式构造下一个拦截器链
    RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
        connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
        writeTimeout);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);
  1. 实例化下一个拦截器的Chain。
  2. 获取当前拦截器。
  3. 调用当前拦截器的intercept方法处理请求,并将下一个拦截器的chain交给当前拦截器持有。

2.RetryAndFollowUpInterceptor

根据前面的分析(生成RealCall的过程),除了OkHttpClient自定义设置的拦截器,该拦截器是首先被调用的拦截器。
该拦截器负责失败重试及需要时的重定向处理,如果call被取消它可能会抛出IO异常。
看下它是如何处理请求的:

 @Override public Response intercept(Chain chain) throws IOException {
    Request request = chain.request();
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Call call = realChain.call();
    EventListener eventListener = realChain.eventListener();

    streamAllocation = new StreamAllocation(client.connectionPool(), createAddress(request.url()),
        call, eventListener, callStackTrace);

    int followUpCount = 0;
    Response priorResponse = null;
    while (true) {
      if (canceled) {
        streamAllocation.release();
        throw new IOException("Canceled");
      }

      Response response;
      boolean releaseConnection = true;
      try {
        //1.这是核心代码,直接调用了下一个拦截器处理,因为该拦截器不会直接返回Response
        response = realChain.proceed(request, streamAllocation, null, null);
        releaseConnection = false;
      } catch (RouteException e) {
        // The attempt to connect via a route failed. The request will not have been sent.
        //请求线路失败的情况,请求将不会发送
        if (!recover(e.getLastConnectException(), false, request)) {
          throw e.getLastConnectException();
        }
        releaseConnection = false;
        continue;
      } catch (IOException e) {
        // An attempt to communicate with a server failed. The request may have been sent.
        // 与服务器尝试通讯失败,那么请求可能不会被发送
        boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
        if (!recover(e, requestSendStarted, request)) throw e;
        releaseConnection = false;
        continue;
      } finally {
        // We're throwing an unchecked exception. Release any resources.
        // 抛出未检查的异常,释放资源
        if (releaseConnection) {
          streamAllocation.streamFailed(null);
          streamAllocation.release();
        }
      }

      // Attach the prior response if it exists. Such responses never have a body.
      if (priorResponse != null) {
        response = response.newBuilder()
            .priorResponse(priorResponse.newBuilder()
                    .body(null)
                    .build())
            .build();
      }

      Request followUp = followUpRequest(response);

      if (followUp == null) {
        if (!forWebSocket) {
          streamAllocation.release();
        }
        return response;
      }

      closeQuietly(response.body());

      if (++followUpCount > MAX_FOLLOW_UPS) {
        streamAllocation.release();
        throw new ProtocolException("Too many follow-up requests: " + followUpCount);
      }

      if (followUp.body() instanceof UnrepeatableRequestBody) {
        streamAllocation.release();
        throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
      }

      if (!sameConnection(response, followUp.url())) {
        streamAllocation.release();
        streamAllocation = new StreamAllocation(client.connectionPool(),
            createAddress(followUp.url()), call, eventListener, callStackTrace);
      } else if (streamAllocation.codec() != null) {
        throw new IllegalStateException("Closing the body of " + response
            + " didn't close its backing stream. Bad interceptor?");
      }

      request = followUp;
      priorResponse = response;
    }
  }
  1. 核心代码
response = realChain.proceed(request, streamAllocation, null, null);
  1. 后续请求构造
 Request followUp = followUpRequest(response);

根据返回结果码来构造接下来需要进行的请求,这也是重试机制的体现。
如果followUp为空,则不再进行重试。

3.BridgeInterceptor

该拦截器负责将用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应 。

@Override public Response intercept(Chain chain) throws IOException {
    Request userRequest = chain.request();
    Request.Builder requestBuilder = userRequest.newBuilder();
     //检查用户的request,并转换为合适的服务器请求
    RequestBody body = userRequest.body();
    if (body != null) {
      MediaType contentType = body.contentType();
      if (contentType != null) {
        requestBuilder.header("Content-Type", contentType.toString());
      }

      long contentLength = body.contentLength();
      if (contentLength != -1) {
        requestBuilder.header("Content-Length", Long.toString(contentLength));
        requestBuilder.removeHeader("Transfer-Encoding");
      } else {
        requestBuilder.header("Transfer-Encoding", "chunked");
        requestBuilder.removeHeader("Content-Length");
      }
    }

    if (userRequest.header("Host") == null) {
      requestBuilder.header("Host", hostHeader(userRequest.url(), false));
    }

    if (userRequest.header("Connection") == null) {
      requestBuilder.header("Connection", "Keep-Alive");
    }

    // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
    // the transfer stream.
    boolean transparentGzip = false;
    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
      transparentGzip = true;
      requestBuilder.header("Accept-Encoding", "gzip");
    }

    List cookies = cookieJar.loadForRequest(userRequest.url());
    if (!cookies.isEmpty()) {
      requestBuilder.header("Cookie", cookieHeader(cookies));
    }

    if (userRequest.header("User-Agent") == null) {
      requestBuilder.header("User-Agent", Version.userAgent());
    }
    //将响应转换为合适的Response
    Response networkResponse = chain.proceed(requestBuilder.build());

    HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());

    Response.Builder responseBuilder = networkResponse.newBuilder()
        .request(userRequest);

    if (transparentGzip
        && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
        && HttpHeaders.hasBody(networkResponse)) {
      GzipSource responseBody = new GzipSource(networkResponse.body().source());
      Headers strippedHeaders = networkResponse.headers().newBuilder()
          .removeAll("Content-Encoding")
          .removeAll("Content-Length")
          .build();
      responseBuilder.headers(strippedHeaders);
      String contentType = networkResponse.header("Content-Type");
      responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
    }

    return responseBuilder.build();
  }

4.CacheInterceptor

这是OkHttp中一个很重要的拦截器,也是我们通常所说的网络请求缓存,它能在允许使用缓存的情况下,快速返回已经缓存的请求结果。

@Override public Response intercept(Chain chain) throws IOException {
    //读取缓存
    Response cacheCandidate = cache != null
        ? cache.get(chain.request())
        : null;

    long now = System.currentTimeMillis();

    //根据缓存请求生成对应的策略    
    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
    Request networkRequest = strategy.networkRequest;
    Response cacheResponse = strategy.cacheResponse;

    if (cache != null) {
      cache.trackResponse(strategy);
    }
    //存在缓存,但是缓存不允许,那么就关掉缓存
    if (cacheCandidate != null && cacheResponse == null) {
      closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
    }

    // If we're forbidden from using the network and the cache is insufficient, fail.
    //如果我们被禁止使用网络,且缓存为空,那么直接返回错误
    if (networkRequest == null && cacheResponse == null) {
      return new Response.Builder()
          .request(chain.request())
          .protocol(Protocol.HTTP_1_1)
          .code(504)
          .message("Unsatisfiable Request (only-if-cached)")
          .body(Util.EMPTY_RESPONSE)
          .sentRequestAtMillis(-1L)
          .receivedResponseAtMillis(System.currentTimeMillis())
          .build();
    }

    // If we don't need the network, we're done.
    // 如果我们不需要使用网络,那么直接返回缓存
    if (networkRequest == null) {
      return cacheResponse.newBuilder()
          .cacheResponse(stripBody(cacheResponse))
          .build();
    }

    // 不存在缓存的情况下,直接调用下个拦截器进行处理
    Response networkResponse = null;
    try {
      networkResponse = chain.proceed(networkRequest);
    } finally {
      // If we're crashing on I/O or otherwise, don't leak the cache body.
      // 如果我们发生了IO异常,那么我们就关掉缓存,防止泄露
      if (networkResponse == null && cacheCandidate != null) {
        closeQuietly(cacheCandidate.body());
      }
    }

    // If we have a cache response too, then we're doing a conditional get.
    //如果我们存在缓存,且网络请求的结果信息未改变
    if (cacheResponse != null) {
      if (networkResponse.code() == HTTP_NOT_MODIFIED) {
        Response response = cacheResponse.newBuilder()
            .headers(combine(cacheResponse.headers(), networkResponse.headers()))
            .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
            .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
        networkResponse.body().close();

        // Update the cache after combining headers but before stripping the
        // Content-Encoding header (as performed by initContentStream()).
        // 更新缓存内容
        cache.trackConditionalCacheHit();
        cache.update(cacheResponse, response);
        return response;
      } else {
        closeQuietly(cacheResponse.body());
      }
    }

    Response response = networkResponse.newBuilder()
        .cacheResponse(stripBody(cacheResponse))
        .networkResponse(stripBody(networkResponse))
        .build();

      //将未缓存过的内容进行缓存处理
    if (cache != null) {
      if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
        // Offer this request to the cache.
        CacheRequest cacheRequest = cache.put(response);
        return cacheWritingResponse(cacheRequest, response);
      }

      //对于一些特殊的请求方法,是无法进行缓存的;如果存在则进行移除
     //不可缓存的请求方法:POST|PATCH|PUT|DELETE|MOVE
      if (HttpMethod.invalidatesCache(networkRequest.method())) 
     {
        try {
          cache.remove(networkRequest);
        } catch (IOException ignored) {
          // The cache cannot be written.
        }
      }
    }

    return response;
  }

5. ConnectInterceptor

该拦截器主要负责建立与服务器的连接,为后续处理返回结果做铺垫。

  @Override public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Request request = realChain.request();
    StreamAllocation streamAllocation = realChain.streamAllocation();

    // We need the network to satisfy this request. Possibly for validating a conditional GET.
    boolean doExtensiveHealthChecks = !request.method().equals("GET");
    HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
    RealConnection connection = streamAllocation.connection();

    return realChain.proceed(request, streamAllocation, httpCodec, connection);
  }

代码很简单,建立连接其实核心就是创建了一个HttpCodec 实例,HttpCodec的主要作用就是:Encodes HTTP requests and decodes HTTP responses。

HttpCodec是一个接口,它的实现类有两个,分别为:

  • Http1Codec
    用于发送HTTP/1.1消息的连接。
  • Http2Codec
    用于处理HTTP/2消息。

5.NetworkInterceptors

配置OkHttpClient时设置的 NetworkInterceptors。

6.CallServerInterceptor

该拦截器主要是向服务器发送请求。

 @Override public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    HttpCodec httpCodec = realChain.httpStream();
    StreamAllocation streamAllocation = realChain.streamAllocation();
    RealConnection connection = (RealConnection) realChain.connection();
    Request request = realChain.request();

    long sentRequestMillis = System.currentTimeMillis();

    realChain.eventListener().requestHeadersStart(realChain.call());
    httpCodec.writeRequestHeaders(request);
    realChain.eventListener().requestHeadersEnd(realChain.call(), request);

    Response.Builder responseBuilder = null;
    if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
      // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
      // Continue" response before transmitting the request body. If we don't get that, return
      // what we did get (such as a 4xx response) without ever transmitting the request body.
      if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
        httpCodec.flushRequest();
        realChain.eventListener().responseHeadersStart(realChain.call());
        responseBuilder = httpCodec.readResponseHeaders(true);
      }

      if (responseBuilder == null) {
        // Write the request body if the "Expect: 100-continue" expectation was met.
        realChain.eventListener().requestBodyStart(realChain.call());
        long contentLength = request.body().contentLength();
        CountingSink requestBodyOut =
            new CountingSink(httpCodec.createRequestBody(request, contentLength));
        BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);

        request.body().writeTo(bufferedRequestBody);
        bufferedRequestBody.close();
        realChain.eventListener()
            .requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
      } else if (!connection.isMultiplexed()) {
        // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
        // from being reused. Otherwise we're still obligated to transmit the request body to
        // leave the connection in a consistent state.
        streamAllocation.noNewStreams();
      }
    }

    httpCodec.finishRequest();

    if (responseBuilder == null) {
      realChain.eventListener().responseHeadersStart(realChain.call());
      //此处是发起网络请求并获得返回结果
      responseBuilder = httpCodec.readResponseHeaders(false);
    }

    Response response = responseBuilder
        .request(request)
        .handshake(streamAllocation.connection().handshake())
        .sentRequestAtMillis(sentRequestMillis)
        .receivedResponseAtMillis(System.currentTimeMillis())
        .build();

    realChain.eventListener()
        .responseHeadersEnd(realChain.call(), response);

    int code = response.code();
    if (forWebSocket && code == 101) {
      // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
      response = response.newBuilder()
          .body(Util.EMPTY_RESPONSE)
          .build();
    } else {
      response = response.newBuilder()
          .body(httpCodec.openResponseBody(response))
          .build();
    }

    if ("close".equalsIgnoreCase(response.request().header("Connection"))
        || "close".equalsIgnoreCase(response.header("Connection"))) {
      streamAllocation.noNewStreams();
    }

    if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
      throw new ProtocolException(
          "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
    }

    return response;
  }

2.异步请求

示例

    /**
     * 异步get请求
     *
     * @param url      请求的url
     * @param callback 回调接口
     */
    public static void asyncGet(String url, Callback callback) {

        //1.实例化一个OkHttpClient实例
        OkHttpClient client = new OkHttpClient();

        //2.构造一个Request请求
        //这几乎是最简单的请求构造方法
        Request request = new Request.Builder()
                .url(url)
                .build();


        //3.根据request生成call请求
        Call call = client.newCall(request);

        //4.调用异步处理方法
        //Callback是为了演示如何使用它,可直接使用传入的callback
        call.enqueue(new Callback() {
            @Override
            public void onFailure(Call call, IOException e) {
                e.printStackTrace();
            }

            @Override
            public void onResponse(Call call, Response response) throws IOException {
                boolean isSuccessful=response.isSuccessful();
                if(isSuccessful){
                    System.out.println(response.body().string());
                }else{
                    throw  new IOException("Unexpected code:"+response.code());
                }

            }
        });

    }

在以上代码中1、2、3都与同步请求的过程相同,在此不再赘述。接下来,我们从call.enqueue(new Callback() )分析异步请求的过程,下面我们先来看RealCall的enqueue方法。

@Override public void enqueue(Callback responseCallback) {
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    captureCallStackTrace();
    eventListener.callStart(this);
    client.dispatcher().enqueue(new AsyncCall(responseCallback));
  }

调用了Dispatcher的enqueue方法,我们接着往下看:

 synchronized void enqueue(AsyncCall call) {
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
      runningAsyncCalls.add(call);
      executorService().execute(call);
    } else {
      readyAsyncCalls.add(call);
    }
  }

如果中的runningAsynCalls的数量小于最大的请求数(64),且call占用的host小于最大数量(5),那么就将call加入到runningAsyncCalls中利用线程池执行call;否者将call加入到readyAsyncCalls(后续会按顺序执行)。
下面是runningAsyncCalls与readyAsyncCalls的定义:

 /** Ready async calls in the order they'll be run. */
  private final Deque readyAsyncCalls = new ArrayDeque<>();

  /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
  private final Deque runningAsyncCalls = new ArrayDeque<>();

那么AsyncCall 到底是什么呢,我们来看AsyncCall 的定义:

final class AsyncCall extends NamedRunnable {
    private final Callback responseCallback;

    AsyncCall(Callback responseCallback) {
      super("OkHttp %s", redactedUrl());
      this.responseCallback = responseCallback;
    }

    String host() {
      return originalRequest.url().host();
    }

    Request request() {
      return originalRequest;
    }

    RealCall get() {
      return RealCall.this;
    }

    @Override protected void execute() {
      boolean signalledCallback = false;
      try {
        //核心代码是这一句
        Response response = getResponseWithInterceptorChain();
        if (retryAndFollowUpInterceptor.isCanceled()) {
          signalledCallback = true;
          responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
        } else {
          signalledCallback = true;
          responseCallback.onResponse(RealCall.this, response);
        }
      } catch (IOException e) {
        if (signalledCallback) {
          // Do not signal the callback twice!
          Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
        } else {
          eventListener.callFailed(RealCall.this, e);
          responseCallback.onFailure(RealCall.this, e);
        }
      } finally {
        client.dispatcher().finished(this);
      }
    }
  }

原来AsyncCall是一个Runnable对象,它的核心代码就是这一句:
Response response = getResponseWithInterceptorChain();
我们已经在上一节的篇章中分析过该语句的执行过程,这样异步任务也同样通过了interceptor,剩下的流程就和上面一样了。

3.结束语

很多框架结构都没有我们想象中的那么难,只要静下心来分析,相信大家都能理解其内部的流程和机制。希望大家在以后的工作学习中也能多思考、多看,早日写出自己的牛逼框架。

你可能感兴趣的:(OkHttp源码解析)