- 壁纸样机神器:个性化壁纸宣传生成器,提升你的宣发效率
2401_89910411
数码相机
在数字时代,壁纸不仅是手机或电脑屏幕的装饰,更是个人品味和创意的展示窗口。但你是否想过,自己也能轻松设计出专业级的壁纸,并将其转化为独特的作品?今天,就让我们一起探索壁纸样机神器的神奇魅力,开启你的壁纸创作之旅。为什么你需要壁纸样机神器?在社交媒体和数字内容盛行的今天,壁纸设计已经不仅仅是一种爱好,更是一种可以变现的技能。无论是个人创作者、设计师还是品牌推广者,一款好的壁纸设计工具都能为你带来巨大
- 《人月神话》书评
冬季的小麦
读书笔记读书笔记
中国科学技术大学软件学院彭家德原创作品转载请注明出处人月神话这本书不涉及具体的程序需开发语言,而是从软件开发过程管理的角度来论述如何提高软件开发效率,对于几乎没有参加过实际的软件开发项目的博客作者来说,读起来想要有深入的理解还是很困难的,只能考从平时做小项目的经验和一些常识性逻辑性的推测来理解其中的很多概念,不过,我依然觉得这本书读完之后收获很大,在此之前,我对于一个项目的理解从来没有超出过程序和
- 机器学习:k均值
golemon.
ML机器学习均值算法人工智能
所有代码和文档均在golitter/Decoding-ML-Top10:使用Python优雅地实现机器学习十大经典算法。(github.com),欢迎查看。在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,较为经典的是聚类。**聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。**聚
- 【机器学习】无监督学习算法之:K均值聚类
Carl_奕然
机器学习算法学习
K均值聚类1、引言2、K均值聚类2.1定义2.2原理2.3实现方式2.4算法公式2.4.1距离计算公式2.4.1中心点计算公式2.5代码示例3、总结1、引言小屌丝:鱼哥,K均值聚类我不懂,能不能给我讲一讲?小鱼:行,可以小屌丝:额…今天咋直接就答应了?小鱼:不然呢?小屌丝:有啥条件,直接说,小鱼:没有小屌丝:这咋的了,不提条件,我可不踏实小鱼:你看看你,我不提条件,你还不踏实,那你这是非让我提条件
- EtherCAT主站IGH-- 51 -- IGH之控制电机旋转位置模式(PP模式)
常驻客栈
EtherCAT主站-IGHEtherCATIGHEtherCAT主站c语言
EtherCAT主站IGH--51--IGH之控制电机旋转位置模式(PP模式)0Ubuntu18.04系统IGH博客、视频欣赏链接一代码实现二编译运行该文档修改记录:总结环境:系统:ubuntu18.04,xenomai3.1主站:IGH电机:松下A6B。该博客功能视频欣赏EtherCAT主站-IGH--51--ubuntu18控制电机旋转(PP模式)0Ubuntu18.04系统IGH博客、视频欣
- 大语言模型常用微调与基于SFT微调DeepSeek R1指南
知来者逆
LLM深度学习人工智能自然语言处理DeepSeekSFT微调
概述大型语言模型(LLM,LargeLanguageModel)的微调(Fine-tuning)是指在一个预训练模型的基础上,使用特定领域或任务的数据对模型进行进一步训练,以使其在该领域或任务上表现更好。微调是迁移学习的一种常见方法,能够显著提升模型在特定任务上的性能。在大型语言模型(LLM)的微调中,有几种常见的方法,包括SFT(监督微调)、LoRA(低秩适应)、P-tuningv2和**Fre
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- 新手做短视频,再也不用担心重复度过高,一个短视频有收益352
大 周 网 络
相信很多做短视频的新手小伙伴们会经常遇到视频无法通过平台审核,出现重复度过高、有高度类似作品已发布的情况发生。短视频无法发布成功,就没有播放量,没有播放量就没有收益,更不可能涨粉,长此以往账号的权重会降低不说,还会打击自己的自信心。应该怎样做才能避免类似的情况再次发生,提高作品的原创度和播放量呢?今天大周就来分享几个实用的小技巧,也是我自己常用的方法。一、镜像翻转把原视频内容做镜像翻转,等于是把视
- labview通过以太网基于s7协议,读写西门子系列plc1500 plc1200 plc400 plc300 plc2
zerbo
labviewplclabview
源码地址:正在为您运送作品详情正在为您运送作品详情https://mbd.pub/o/bread/ZZick5pu【闲鱼】https://m.tb.cn/h.5oMjHEf?tk=aZNpWT5fuXyCZ0001
- k均值聚类python实现
小尤笔记
均值算法聚类python开发语言Python基础
K均值聚类(K-MeansClustering)是一种常用的无监督学习算法,用于将数据分成K个簇。以下是一个简单的Python实现K均值聚类的代码讲解,包括数据准备、初始化、迭代更新簇心和分配簇标签等步骤。CSDN大礼包:《2025年最新全套学习资料包》免费分享代码实现importnumpyasnpimportmatplotlib.pyplotasplt#生成示例数据np.random.seed(
- 潮州观林曦老师书画展 幸福又圆满
消息快传
生活
元宵节前一日,去潮州看林曦老师的书画展,一次没看够,元宵节当天又去一次,一个人一幅画站定很久,才满足才甘心。站在林曦老师作品前,除看到每一笔里的功夫,天真、温柔与精进——这次展览的主题,也是最能表达老师人生态度的六个字跃然纸上,很难没有好兴致。记得我成为林曦老师的学生,是二零二二年,那年春天跟随林曦老师写下了第一笔横道道和圆圈圈。我爱半途而废,却不知不觉写了那么久,时常感慨。天资普通,用功一般,所
- 机器学习里的逻辑回归Logistic Regression基本原理与应用
硅基创想家
AI-人工智能与大模型机器学习逻辑回归人工智能
LogisticRegression即逻辑回归,是一种广泛应用于机器学习和数据挖掘领域的有监督学习算法,以下从原理、应用、算法优缺点等方面进行介绍:基本原理线性回归基础:逻辑回归基于线性回归模型,其基本形式为:z=w1x1+w2x2+⋯+wnxn+bz=w_1x_1+w_2x_2+\cdots+w_nx_n+bz=w1x1+w2x2+⋯+wnxn+b其中xix_ixi是特征变量,wiw_iwi是对
- 2025年了, 都哪些物种有空转数据?
Biomamba生信基地
生信数据物种
一、写在前面:之前给大家整理过类似的合集话题:2022年了,都有哪些器官/组织有scRNA-Seq数据|小鼠篇2022年了,都有哪些器官/组织有scRNA-Seq数据|人类篇2023年了,都哪些物种有scRNA-Seq数据2024年了,都哪些组织有空转数据(小鼠篇)2024年了,都哪些组织有空转数据(人类篇)这次我们检索了空间转录组文章中包含除了人类、小鼠数据外的作品,我们尽量在Pubmed里挑了
- 4399游戏2025届春招内推
飞300
游戏pythonjavajavascript业界资讯
如果你一直有一个游戏梦想!Comeon!4399游戏超多HC等你来投递!!快来4399一起打游戏~《冒险大作战》《文明与征服》《小小英雄》《主宰世界》《狩猎使命》《天姬变》…✅全球领先的中文娱乐平台之一,连续12年中国互联网企业百强前50强✅拥有多款亿级流水、百万DAU游戏作品✅薪酬待遇:产品类/运营市场类25W-40W+,其他类岗15W-35W+,还有专属SSP✅专属大牛导师、快速成长通道、项目
- 如何学BI大数据
想做富婆
大数据相关大数据BI大数据
职业规划建议1.短期目标(1-2年)积累经验:通过实习或初级岗位(如数据分析师、商业分析师)积累经验。提升技能:深入学习SQL、Python、BI工具,掌握数据分析和可视化技能。建立作品集:完成个人项目或参与开源项目,展示数据分析能力。2.中期目标(3-5年)专业化发展:根据兴趣选择细分方向,如数据可视化、BI开发或数据运营。提升软技能:加强沟通、项目管理能力,提升商业敏感度。行业深耕:选择感兴趣
- Python机器学习舆情分析项目案例分享
数澜悠客
数字化转型python机器学习开发语言
数据收集与准备1.数据收集多样化数据源:从社交媒体平台(如微博、Twitter)、新闻网站、论坛等多渠道收集数据,以获取更全面的舆情信息。可以使用Python的requests库和网页解析库(如BeautifulSoup)进行网页数据爬取,使用Tweepy库获取Twitter数据。数据标注:对于监督学习,需要对收集到的数据进行标注,标记为积极、消极或中性等类别。可以使用人工标注的方式,也可以利用半
- python电商数据挖掘_Python 爬取淘宝商品数据挖掘分析实战
weixin_39946996
python电商数据挖掘
作者孙方辉本文为CDA志愿者投稿作品,转载需授权项目内容本案例选择>>商品类目:沙发;数量:共100页4400个商品;筛选条件:天猫、销量从高到低、价格500元以上。项目目的1.对商品标题进行文本分析词云可视化2.不同关键词word对应的sales的统计分析3.商品的价格分布情况分析4.商品的销量分布情况分析5.不同价格区间的商品的平均销量分布6.商品价格对销量的影响分析7.商品价格对销售额的影响
- 【一起看花书1.3】——第5章 机器学习基础
应有光
基础知识机器学习人工智能深度学习
先验是“知识”,是合理的假设本文内容对应于原书的5.7-5.11共5小节内容,其中知识性、结论性的内容偏多,也加入了点个人见解。目录:5.7监督学习5.8无监督学习5.9随机梯度下降5.10构建机器学习算法5.11深度学习发展的动力5.7监督学习监督学习,本质上是复杂函数的拟合,即给定特征xxx,我们需要得到标签yyy,这不就是求一个函数的拟合嘛?线性回归是比较简单的,从高代、概率论就可以理解,甚
- [论文阅读] CLIP-based fusion-modal reconstructing hashing for large-scaleunsupervised cross-modal retri
2301_80732299
论文阅读
摘要随着多模态数据的激增,人们不再满足于单一的数据检索模式来获取信息。深度哈希检索算法以其存储效率高、查询速度快等优点受到广泛关注。目前,现有的无监督哈希方法普遍存在两方面的局限性:(1)现有方法不能充分捕获不同模态数据中潜在的语义相关性和共存信息,导致缺乏有效的特征和哈希编码表示来弥合多模态数据中的异构和语义差距。(2)现有的无监督方法通常构造相似矩阵来指导哈希码学习,存在不准确的相似度问题,导
- VMware NSX 4.2.1.3 发布 - 网络安全虚拟化平台
虚拟化
VMwareNSX4.2.1.3发布-网络安全虚拟化平台构建具有网络连接和安全性的云智能网络,跨多种云环境支持一致的策略、运维和自动化。请访问原文链接:https://sysin.org/blog/vmware-nsx-4/查看最新版。原创作品,转载请保留出处。作者主页:sysin.orgVMwareNSX4.2.1.3|10FEB2025|Build24533884网络虚拟化平台VMwareNS
- ALBERT:轻量级的BERT,用于语言表征的自监督学习
人工智能
ALBERT:轻量级的BERT,用于语言表征的自监督学习阅读时长:19分钟发布时间:2025-02-13近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】ALBERT提出了特定的参数缩减技术,以降低内存消耗并提高BERT的训练速度。模型架构选择ALBERT架构的主干与BERT类似,它使用带
- 解锁Archive of Our Own的无限可能
sgsdhd
sqliteoraclejsonsqldatabaseredis
项目介绍AO3API是一个非官方的Python库,旨在通过编程方式访问ArchiveofOurOwn(AO3)网站的数据。AO3是一个广受欢迎的同人作品存档网站,拥有大量的同人小说、评论和用户数据。通过AO3API,开发者可以轻松地获取、处理和分析这些数据,从而为同人社区带来更多创新的应用和服务。项目技术分析AO3API的核心功能被划分为九个模块:works、chapters、users、seri
- GPT 系列模型发展史:从 GPT 到 ChatGPT 的演进与技术细节
Ash Butterfield
nlpgptchatgpt
从GPT到ChatGPT,OpenAI用短短几年时间,彻底改变了自然语言处理(NLP)的格局。让我们一起回顾这段激动人心的技术演进史!GPT(2018):划时代的起点:GPT(GenerativePre-trainedTransformer)首次将Transformer架构与无监督预训练结合,开启了大规模语言模型的新时代。核心突破:通过海量文本预训练+任务微调,GPT展示了强大的泛化能力。GPT-
- 机器学习算法工程师笔试选择题(1)
Ash Butterfield
机器学习算法人工智能
1.关于梯度下降的说法正确的是:A.梯度下降法可以确保找到全局最优解。B.随机梯度下降每次使用所有数据来更新参数。C.批量梯度下降(BatchGradientDescent)通常收敛更快。D.学习率过大会导致梯度下降过程震荡。答案:D(学习率过大会导致不稳定,可能震荡或无法收敛)2.在以下算法中,哪种算法属于无监督学习?A.逻辑回归B.K-近邻算法C.支持向量机D.K-均值聚类答案:D(K-均值聚
- 【必看】凭啥?DeepSeek如何用1/179的训练成本干到GPT-4o 98%性能
大F的智能小课
人工智能算法
一、DeepSeek降低训练成本的核心方法1.1创新训练方法DeepSeek通过独特的训练方案显著降低了训练成本。其核心策略包括减少监督微调(SFT)步骤,仅依赖强化学习(RL)技术。DeepSeek-R1-Zero版本完全跳过SFT,仅通过RL进行训练。尽管初期计算开销较大,但添加少量冷启动数据后,训练稳定性和模型推理能力大幅提升。此外,DeepSeek还采用了组相对策略优化(GRPO)算法替代
- 《哪吒》的成功之道:影视创作项目管理的“核心技巧”
《哪吒》票房神话背后:揭秘影视创作项目管理的“乾坤圈”——从“手工作坊”到工业化体系,一部爆款的诞生逻辑[]()一、50亿票房背后的“不可能任务”2025年春节档,《哪吒之魔童闹海》以95.1亿元票房刷新影史纪录,成为首个登顶全球动画票房榜的国产电影1。然而,鲜为人知的是,这部现象级作品背后,是一场“逆天改命”的极限挑战——4000人团队:制作规模是第一部的2-3倍,涉及160余家外包公司9;19
- 搜维尔科技在动作捕捉与动画制作、汽车制造与安全测试、机器人与自动化领域的一些案例
虚拟现实产品超市
科技汽车制造
动作捕捉与动画制作领域1.逼真的手部和面部动画制作:动画师施先生利用搜维尔科技代理的Xsens套装、ManusVR手套和Faceware的面部动作捕捉系统,捕捉短片中人物的手部和面部动作,再将数据重新定位到角色骨架上并调整,最终在虚幻引擎5的支持下,制作出极其逼真和流畅的动画。2.《伊苏:梦境交织的长夜》游戏开发:北京源力星聚网络科技有限公司使用搜维尔科技提供的2套XsensMVNlink、2副M
- 【深度学习】常见模型-GPT(Generative Pre-trained Transformer,生成式预训练 Transformer)
IT古董
深度学习人工智能深度学习gpttransformer
GPT(GenerativePre-trainedTransformer)1️⃣什么是GPT?GPT(GenerativePre-trainedTransformer,生成式预训练Transformer)是由OpenAI开发的基于Transformer解码器(Decoder)的自回归(Autoregressive)语言模型。它能够通过大量无监督数据预训练,然后微调(Fine-tuning)以适应特
- 从零开始构建一个大语言模型-第七章第一节
释迦呼呼
从零开始构建一个大语言模型语言模型人工智能自然语言处理机器学习transformer
第七章目录7.1指令微调简介7.2为有监督的指令微调准备数据集7.3将数据整理成训练批次7.4为指令数据集创建数据加载器7.5加载预训练的大语言模型7.6在指令数据上对大语言模型进行微调7.7提取并保存回复7.8评估微调后的大语言模型7.9结论本章内容涵盖大语言模型的指令微调过程准备用于有监督指令微调的数据集将指令数据整理成训练批次提取大语言模型生成的指令响应以供评估此前,我们实现了大语言模型(L
- 前瞻技术:塑造未来生活的新趋势
火龙果wa
生活人工智能经验分享
人工智能在艺术创作中的应用越来越普遍。AI可以生成画作、音乐和文学作品。它通过分析大量数据,学习艺术风格,并能创造出独特的作品。AI创作的艺术作品有几个特点。首先,它可以快速完成创作,节省时间。第二,AI能够融合多种风格。这使得作品更加多样化,有了新的表现形式。此外,AI常常会产生一些意想不到的创意,这能激发人们的灵感。艺术家与AI的合作也在逐渐发展。很多艺术家开始尝试与AI共同创作。他们使用AI
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu