作者:Stefan Richter
翻译:毛家琦
校对:胡争
本文描述了一些配置选项,这些选项将帮助您有效地管理规划 Apache Flink 中 RocksDB state backend 的内存大小。在前面的文章[1]中,我们描述了 Flink 中支持的可选 state backend 选项,本文将介绍跟 Flink 相关的一些 RocksDB 操作,并讨论一些提高资源利用率的重要配置。
Tips:从 Flink 1.10 开始,Flink 自动管理 RocksDB 的内存,详细介绍如下:
https://ci.apache.org/project...
RocksDB 的状态后端
在深入了解配置参数之前,先回顾一下在 Apache Flink 中如何使用 RocksDB 来进行状态管理。当选择 RocksDB 作为状态后端时,状态将作为序列化字节串存在于堆外内存(off-heap) 存储或本地磁盘中。
RocksDB 是一个以日志合并树( LSM 树)作为索引结构的 KV 存储引擎。当用于在 Flink 中存储 kv 状态时,键由
使用 RocksDB 作为状态后端有许多优点:
- 不受 Java 垃圾回收的影响,与 heap 对象相比,它的内存开销更低,并且是目前唯一支持增量检查点(incremental checkpointing)的选项。
- 使用 RocksDB,状态大小仅受限于本地可用的磁盘空间大小,这很适合 state 特别大的 Flink 作业。
下面的图表将进一步阐明 RocksDB 的基本读写操作。
RocksDB 的一次写入操作将把数据写入到内存的 MemTable 中。当 MemTable 写满时,它将成为 READ ONLY MemTable,并被一个新申请的 MemTable 替换。只读 MemTable 被后台线程周期性地刷新到磁盘中,生成按键排序的只读文件,这便是所谓的 SSTables。这些 SSTable 是不可变的,通过后台的多路归并实现进一步的整合。如前所述,对于 RocksDB,每个注册状态都是一个列族,这意味着每个状态都包含自己的 MemTables 和 SSTables 集。
RocksDB 中的读取操作首先访问活动内存表(Active Memory Table)来反馈查询。如果找到待查询的 key,则读取操作将由新到旧依次访问,直到找到待查询的 key 为止。如果在任何 MemTable 中都找不到目标 key,那么 READ 操作将访问 SSTables,再次从最新的开始。SSTables 文件可以:
- 优先去 RocksDB 的 BlockCache 读取;
- 如果 BlockCache 没有的话,就去读操作系统的文件,这些文件块又可能被操作系统缓存了;
- 最差的情况就是去本地磁盘读取;
- SST 级别的 bloom filter 策略可以避免大量的磁盘访问。
## 管理 RocksDB 内存的 3 种配置
现在,我们理解了 Flink 和 Rocksdb 的协作机制,接下来看看可以更有效地管理 RocksDB 内存大小的配置选项有哪些?请注意,下面的选项并不详尽,因为您可以使用 Apache Flink 1.6 中引入的 state TTL(Time To Live)功能来规划 Flink 应用程序的状态大小。
以下三种配置可以有效帮助您管理 Rocksdb 的内存开销:
1.block_cache_size 的配置
此配置最终将控制内存中缓存的最大未压缩块数。随着块数的不断增加,内存大小也会增加。因此,通过预先配置,您可以保持固定的内存消耗水平。
2.write_buffer_size 的配置
这种配置控制着 RocksDB 中 MemTable 的最大值。活跃 MemTables 和只读的 MemTables 最终会影响 RocksDB 中的内存大小,所以提前调整可能会在以后为您避免一些麻烦。
3.max_write_buffer_number 的配置
在 RocksDB 将 MemTables 导出到磁盘上的 SSTable 之前,此配置决定并控制着内存中保留的 MemTables 的最大数量。这实际上是内存中“只读内存表“的最大数量。
除了上面提到的资源之外,您还可以选择配置索引和 bloom 过滤器,它们将消耗额外的内存空间, Table 级别的 Cache 也是一样。
在这里,Table 缓存不仅会额外占用 RocksDB 的内存,还会占用 SST 文件的打开文件描述符,(在默认情况下设置的大小是不受限制的),如果配置不正确,可能会影响操作系统的设置。
我们刚刚给您指导了一些使用配置选项,这些配置有助于高效管理 RocksDB 作为 Flink statebackend 的内存大小。有关更多配置选项,我们建议查看 RocksDB 优化指南[2]或 Apache Flink 文档。
参考资料:
[1] https://www.ververica.com/blo...
[2] https://github.com/facebook/r...