- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- 一维数组 list 呢 ,怎么转换成 (批次 句子长度 特征值 )三维向量 python pytorch lstm 编程 人工智能
zhangfeng1133
pythonpytorch人工智能数据挖掘
一、介绍对于一维数组,如果你想将其转换成适合深度学习模型(如LSTM)输入的格式,你需要考虑将其扩展为三维张量。这通常涉及到批次大小(batchsize)、序列长度(sequencelength)和特征数量(numberoffeatures)的维度。以下是如何将一维数组转换为这种格式的步骤:###1.确定维度-**批次大小(BatchSize)**:这是你一次处理的样本数量。-**序列长度(Seq
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 线性代数基础
wq_151
mathematic线性代数
Base对于矩阵A,对齐做SVD分解,即UΣV=svd(A)U\SigmaV=svd(A)UΣV=svd(A).其中U为AATAA^TAAT的特征向量,V为ATAA^TAATA的特征向量。Σ\SigmaΣ的对角元素为降序排序的特征值。显然,U、V矩阵中的列向量相互正交,所以也可以视V为svd分解给出了A的列向量空间的正交基,其中最大奇异值(或特征值)对应的特征向量捕捉了数据变化的最大方向。求满足A
- 机器学习案例-决策树实现鸢尾花分类
Ausgelebt
机器学习相关python分类
机器学习案例-决策树实现鸢尾花分类目录机器学习案例-决策树实现鸢尾花分类1.选题目的和意义2.主要研究内容2.1决策树算法分类(区别于树的结构和构造算法)2.2决策树算法详解2.3决策树的应用3.算法设计3.1数据分析3.1.1Iris数据集基本介绍3.1.2样本标签值分布3.1.3样本特征值分布3.1.4相关性热力图3.2建立决策树3.3模型调优3.3.1决策树深度(预剪枝)3.3.2选取部分特
- 线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
取个名字真难呐
算法机器学习矩阵人工智能线性代数
文章目录1.ImageNet2.卷积计算2.1两个多项式卷积2.2函数卷积2.3循环卷积3.周期循环矩阵和非周期循环矩阵4.循环卷积特征值4.1卷积计算的分解4.2运算量4.3二维卷积公式5.KroneckerProduct1.ImageNetImageNet的论文paper链接如下:详细请直接阅读相关论文即可通过网盘分享的文件:imagenet_cvpr09.pdf链接:https://pan.
- CVPR 2021 | 即插即用! CA:新注意力机制,助力分类/检测/分割涨点!
Akita·wang
文献解析paperpython机器学习人工智能深度学习计算机视觉
摘要最近关于移动网络设计的研究已经证明了通道注意(例如,挤压和激发注意)对于提升模型性能的显著效果,但是它们通常忽略位置信息,而位置信息对于生成空间选择性注意图是重要的。本文提出了一种新的移动网络注意机制,将位置信息嵌入到信道注意中,我们称之为“协同注意”。与通过2D全局汇集将特征张量转换为单个特征向量的通道注意力不同,坐标注意力将通道注意力分解为两个1D特征编码过程,这两个过程分别沿两个空间方向
- 3D 场景模拟 2D 碰撞玩法的方案
长脖鹿Johnny
数学算法3d游戏游戏引擎算法几何学
目录方法概述顶点到平面的垂直投影求解最小降维OBB主成分分析(PCA)协方差矩阵求矩阵特征值Jacobi方法OBB拉伸方法对于类似《密特罗德生存恐惧》和《暗影火炬城》这样3D场景,但玩法还是2D卷轴动作平台跳跃(类银河恶魔城)的游戏,如果想要让碰撞检测更符合视觉直觉,需要采用3D碰撞体来模拟2D碰撞。本文将介绍一种实现方案。方法概述为了简化碰撞计算,原碰撞体(如武器的碰撞)只使用长方体(OBB)和
- (感知机-Perceptron)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
剑海风云
ArtificialIntelligence机器学习人工智能感知机Perceptron
定义假设输入空间(特征空间)是χ\chiχ⊆Rn\subseteqR^n⊆Rn,输出空间是y={+1,−1}=\{+1,-1\}={+1,−1}。输入x∈χx\in\chix∈χ表示实例的特征向量,对应于输入空间(特征空间)的点;输出y∈y\iny∈y表示实例的类别。由输入空间到输出空间的如下函数:f(x)=sign(ω⋅x+b)f(x)=sign(\omega\cdotx+b)f(x)=sign
- K近邻法(K-nearest neighbor,K-NN)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
剑海风云
ArtificialIntelligence人工智能机器学习K近邻法KNN
定义输入:训练数据集(T={(x1,y1),(x2,y2),…,(xN,yN)}\left\{(x_1,y_1),(x_2,y_2),\dots,(x_N,y_N)\right\}{(x1,y1),(x2,y2),…,(xN,yN)})其中:xi∈χ⊆Rnx_i\in{\tt\chi}\subseteqR^nxi∈χ⊆Rn:实例的特征向量yi∈yy_i\in{\tty}yi∈y={c1,c2,⋯
- Day04-线性代数-特征值和特征向量(DataWhale)
liying_tt
数学基础线性代数
七、特征值和特征向量AAA是n阶方阵,数λ\lambdaλ,若存在非零列向量α⃗\vec{\alpha}α,使得Aα⃗=λα⃗A\vec{\alpha}=\lambda\vec{\alpha}Aα=λα,则λ\lambdaλ是特征值,α⃗\vec{\alpha}α是对应于λ\lambdaλ的特征向量λ\lambdaλ可以为0α⃗\vec{\alpha}α不能为0⃗\vec{0}0,且为列向量Aα⃗
- 线性代数学习笔记8-4:正定矩阵、二次型的几何意义、配方法与消元法的联系、最小二乘法与半正定矩阵A^T A
Insomnia_X
线性代数学习笔记线性代数矩阵学习
正定矩阵Positivedefinitematrice之前说过,正定矩阵是一类特殊的对称矩阵:正定矩阵满足对称矩阵的特性(特征值为实数并且拥有一套正交特征向量、正/负主元的数目等于正/负特征值的数目)另外,正定矩阵还具有更好的性质(所有特征值都为正实数、所有主元都为正实数、左上角的所有任意k阶(10(x≠0)\mathbf{x}^{T}\boldsymbol{A}\mathbf{x}>0\quad
- ClickHouse 二进制特征值怎么转化为字符串
树下水月
clickhouse
要将二进制特征值转化为字符串,可以使用以下方法:1.使用base64编码base64是一种将二进制数据编码为ASCII字符串的方法。在ClickHouse中,可以使用函数base64Encode()来将二进制特征值转化为base64编码的字符串。例如:SELECTbase64Encode(feature)FROMmy_table;2.使用hex编码hex是一种将二进制数据转化为十六进制字符串的方法
- 语音识别 学习笔记2024
AI算法网奇
深度学习基础音视频人工智能
目录dragonfly阿里达摩院FunASR:一款高效的端到端语音识别工具包不错的功能介绍librosa安装语音识别dragonfly阿里达摩院FunASR:一款高效的端到端语音识别工具包不错的功能介绍librosa,一个很有趣的Python库!-简书音频转特征向量GitHub-librosa/librosa:Pythonlibraryforaudioandmusicanalysislibrosa
- openCV【实践系列】2——OpenCV方向梯度直方图
一只长尾巴
什么是特征描述符特征描述符是图像或图像块的表示,其通过提取有用信息和丢弃无关信息来简化图像。通常,特征描述符将一个width*height*3(通道)的图像转换为长度为n的特征向量或数组。在HOG特征描述符的情况下,输入图像的大小为64×128×3,输出特征向量的长度为3780。在HOG特征描述符中,梯度方向(定向梯度)的分布(直方图)被用作特征。图像的梯度(x和y导数)是有用的,因为在边缘和角落
- 线性代数——特征值与特征向量的性质
lwh 98+106
线性代数算法机器学习
(1)设A为方阵,则A与ATA^{T}AT有相同的特征值。此处用到了两个关键性质,一:单位阵的转置为其本身,二:转置并不改变行列式的值。(2):设n阶方阵A=(aija_{ij}aij)的n个特征值为λ1\lambda_{1}λ1,λ2\lambda_{2}λ2,…λn\lambda_{n}λn,则λ1+λ2+λ3+...λn=a11+a22+a33+...+ann\lambda_{1}+\lam
- Fréchet Inception Distance(FID)原理
代维7
生成式模型计算机视觉
原理概述:FID的核心思想是通过比较真实图像和生成图像在Inception模型特征空间中的分布差异,来评估生成模型的性能。它假设从真实数据和生成数据中提取的特征都近似服从高斯分布。具体步骤:特征提取:使用预训练的Inception模型分别对真实图像和生成图像进行处理,得到各自的特征向量。计算均值和协方差:对于真实图像的特征向量集合,计算其均值向量μreal\mu_{real}μreal和协方差矩阵
- 线性代数-MIT 18.06-6(a)
儒雅的钓翁
数学基础线性代数矩阵机器学习
文章目录26.对称矩阵及正定性对称矩阵对称矩阵的特性:矩阵分解(谱定理)定理证明和复数推广对称矩阵和投影矩阵正定性性质1性质227.复数矩阵和快速傅里叶变换复数向量复数矩阵对称性正交性傅里叶矩阵快速傅里叶变换本文在学习《麻省理工公开课线性代数MIT18.06LinearAlgebra》总结反思形成视频链接:MITB站视频笔记部分:总结参考子实26.对称矩阵及正定性对称矩阵对称矩阵的特性:特征值为实
- 每天五分钟计算机视觉:Siamese深度神经网络模型和FaceNet的关系
幻风_huanfeng
计算机视觉计算机视觉dnn人工智能SiameseFaceNet神经网络
本文重点在前面的课程中,我们学习了Siamese深度神经网络模型和FaceNet,二者都可以完成人脸识别任务,本文进行整理学习,理清二者的区别和联系。基本概念与原理Siamese深度神经网络模型Siamese网络,又称孪生网络,由两个结构相同且权重共享的神经网络组成。这两个网络分别处理输入的对比样本,通过比较两个输入样本的特征向量来判断它们的相似度。在人脸识别中,Siamese网络通过计算输入人脸
- PCL 点云ISS关键点提取算法
自动驾驶探索站
C++点云处理基础教程PCL特征提取关键点提取
目录一、概述二、代码示例三、运行结果结果预览接上篇Python点云ISS关键点提取算法一、概述点云ISS关键点(IntrinsicShapeSignatures):利用点云中每个点的局部邻域的协方差矩阵来分析局部几何结构。协方差矩阵的特征值可以揭示局部几何形状的显著性。通过筛选出特征值之间具有显著差异的点,ISS算法能够识别出关键点。参考文献:《IntrinsicShapeSignatures:A
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- 每天一个数据分析题(四百九十)- 主成分分析与因子分析
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在主成分分析中,主成分的选择通常是按照()的大小排序来进行的。A.特征值B.特征向量C.协方差矩阵D.相关系数矩阵数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- Halcon区域的灰度特征值
看海听风心情棒
计算机视觉图像处理人工智能
Halcon区域的灰度特征值gray_features算子用于计算指定区域的灰度特征值。其输入是一组区域,每个区域的特征都存储在一组value数组中。典型的基于灰度值的特征如下:(1)area:灰度区域面积。(2)row:中心点的行坐标。(3)colum:中心点的列坐标。(4)ra:椭圆的长轴。(5)rb:椭圆的短轴。(6)phi:等效椭圆的角度。(7)min:灰度的最小值。(8)max:灰度的最
- 微信小程序蓝牙函数流程图
烟雨国度
微信小程序流程图notepad++
当然可以。我会为您创建一个流程图来展示微信小程序蓝牙操作的主要步骤,并列出相应的on和off函数。然后,我会详细解释每个步骤,并在适当的地方与电脑的工作原理进行类比。首先,让我为您创建一个流程图:开始初始化蓝牙适配器搜索蓝牙设备连接到设备获取服务获取特征值读写数据断开连接关闭蓝牙模块结束wx.onBluetoothAdapterStateChangewx.onBluetoothDeviceFoun
- 数学基础(四)
几两春秋梦_
数学基础算法人工智能机器学习
一、特征值与特征向量特征空间:特征向量的应用:特征值表达了重要程度且和特征向量所对应,那么特征值大的就是主要信息了,基于这点我们可以提供各种有价值的信息。二、SVD矩阵分解基变换:特征值分解:SVD:离散型随机变量概率函数(概率质量函数):连续型随机变量似然函数
- Halcon根据特征值选择区域
看海听风心情棒
计算机视觉人工智能图像处理目标跟踪
Halcon根据特征值选择区域关于提取图像的特征,比较常用的一个算子是select_shape算子,它能高效地根据特征提取出符合条件的区域。该算子的原型如下:select_shape(Regions:SelectedRegions:Features,Operation,Min,Max:)参数1和参数2分别表示输入和输出的区域,值得关注的是参数3Features。这里提供了一个包括多种特征参数的列表
- 小程序连接蓝牙
季风
微信小程序微信小程序微信开放平台
小程序蓝牙功能1.授予蓝牙权限2.蓝牙初始化3.监听寻找新设备4.搜索新设备5.建立连接⭐⭐⭐⭐⭐⭐⭐6.监听蓝牙低功耗连接状态改变事件8.监听特征值变化9.发送数据1.授予蓝牙权限//1.蓝牙授权constauthBlue=(callback,initApp)=>{app=initApp;//鉴定是否授权蓝牙wx.getSetting().then(res=>{if(!res.authSetti
- Pyotrch-卷积神经网络基础组件之全连接层
肆十二
Pytorch语法cnn人工智能神经网络
Pyotrch-卷积神经网络基础组件之全连接层关注B站查看更多手把手教学:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频(bilibili.com)基本原理介绍卷积神经网络(CNN)中的全连接层通常出现在网络的最后几层,用于对前面层提取的特征进行加权和。在全连接层中,每个神经元都与其前一层的所有神经元进行全连接。全连接层的作用是将前面层提取的特征综合起来,形成一个一维的特征向量,以便于后续的分
- 向量的内积、外积、混合积、行列式,以及它们的几何意义 (还有 数量积、点乘、向量积、叉乘)
shimly123456
数学复习线性代数
参考视频1(数量积向量积混合积内积外积):https://www.bilibili.com/video/BV1kL4y1e78T/?vd_source=7a1a0bc74158c6993c7355c5490fc600参考视频2(线性代数:内积、外积、行列式、特征值):https://www.bilibili.com/video/BV16J411J7yF/?vd_source=7a1a0bc7415
- 齐次方程是否有非零解,和它的系数矩阵行列式的关系
shimly123456
数学复习矩阵线性代数
视频来源:https://www.bilibili.com/video/BV1vY4y1J7gd/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc6004:22有这么一句话,如下图对于齐次方程,若系数矩阵的行列式为零,则方程有非零解在求解矩阵的特征向量时,行列式的这个性质可以用来判断
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam