前言
前面已经讲解了Zookeeper可重入锁的实现原理,自己对分布式锁也有了更深的认知。
我在公众号中发了一个疑问,相比于Redis来说,Zookeeper的实现方式要更好一些,即便Redis作者实现了RedLock算法来解决Redis集群模式下分布式锁的弊端,但Redis实现的分布式锁仍然不是那么完美。
比如有5台Redis集群,按照n/2 + 1代表获取锁成功,如果客户端A此时获取锁,Redis集群(1,2,3)返回成功,客户端A获取锁成功。
此时Redis 1 master宕机,切换到slave,而slave并未来得及同步客户端A加锁成功的信息到slave。
客户端B获取锁,Redis集群(1,4,5)返回成功,客户端B仍然可以成功获取锁。
即使如此,为何在实际生产项目中分布式锁大多还是由Redis来完成?
这一点我仍然有些疑惑,我接触过的公司和项目都普遍用Redis来实现分布式锁。
这里就不再纠结了,接着继续学习Zookeeper剩下几个实现分布式锁的组件吧。
Semaphore实现原理
前面已经讲过Redisson中Semaphore的实现原理(【分布式锁】05-使用Redisson中Semaphore和CountDownLatch原理),现在学习下ZK中Semaphore是如何实现的
Semaphore 使用案例
使用示例很简单,Curator官网上有对应代码,使用InterProcessSemaphoreV2
类即可,代码如下:
/** * Zookeeper分布式锁测试代码 * * @author wangmeng * @date 2020/03/30 18:59 */ public class Application { /** Zookeeper info */ private static final String ZK_ADDRESS = "YourZkIP:2181"; private static final String ZK_LOCK_PATH = "/locks/lock_01"; private static final String ZK_SEMAPHORE_LOCK_PATH = "/semaphore/semaphore_01"; public static void main(String[] args) throws InterruptedException { // 1.Connect to zk CuratorFramework client = CuratorFrameworkFactory.newClient( ZK_ADDRESS, new RetryNTimes(10, 5000) ); client.start(); System.out.println("zk client start successfully!"); Thread t1 = new Thread(() -> { testSemaphore(client); }, "t1"); Thread t2 = new Thread(() -> { testSemaphore(client); }, "t2"); Thread t3 = new Thread(() -> { testSemaphore(client); }, "t3"); t1.start(); t2.start(); t3.start(); } /** * 测试Semaphore */ private static void testSemaphore(CuratorFramework client) { InterProcessSemaphoreV2 semaphore = new InterProcessSemaphoreV2(client, ZK_SEMAPHORE_LOCK_PATH, 2); try { Lease lease = semaphore.acquire(); System.out.println(Thread.currentThread().getName() + " hold lock"); Thread.sleep(5000L); semaphore.returnLease(lease); System.out.println(Thread.currentThread().getName() + " release lock"); } catch (Exception e) { e.printStackTrace(); } } }
打印结果为:
因为设置的只允许最多2个客户端同时获取锁。
从效果上看t3和t2同时获取到了锁,接着t3释放了锁后t1才获取锁。
Semaphore加锁源码解析
源码面前出真知,我们直接看下源码:
public class InterProcessSemaphoreV2 { private static final String LOCK_PARENT = "locks"; private static final String LEASE_PARENT = "leases"; private static final String LEASE_BASE_NAME = "lease-"; public Collectionacquire(int qty, long time, TimeUnit unit) throws Exception { long startMs = System.currentTimeMillis(); boolean hasWait = (unit != null); long waitMs = hasWait ? TimeUnit.MILLISECONDS.convert(time, unit) : 0; Preconditions.checkArgument(qty > 0, "qty cannot be 0"); ImmutableList.Builder builder = ImmutableList.builder(); boolean success = false; try { while ( qty-- > 0 ) { int retryCount = 0; long startMillis = System.currentTimeMillis(); boolean isDone = false; while ( !isDone ) { switch ( internalAcquire1Lease(builder, startMs, hasWait, waitMs) ) { case CONTINUE: { isDone = true; break; } // 省略其他分支逻辑 } } } success = true; } finally { if ( !success ) { returnAll(builder.build()); } } return builder.build(); } private InternalAcquireResult internalAcquire1Lease(ImmutableList.Builder builder, long startMs, boolean hasWait, long waitMs) throws Exception { if ( client.getState() != CuratorFrameworkState.STARTED ) { return InternalAcquireResult.RETURN_NULL; } if ( hasWait ) { long thisWaitMs = getThisWaitMs(startMs, waitMs); if ( !lock.acquire(thisWaitMs, TimeUnit.MILLISECONDS) ) { return InternalAcquireResult.RETURN_NULL; } } else { lock.acquire(); } try { PathAndBytesable createBuilder = client.create().creatingParentsIfNeeded().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL); String path = (nodeData != null) ? createBuilder.forPath(ZKPaths.makePath(leasesPath, LEASE_BASE_NAME), nodeData) : createBuilder.forPath(ZKPaths.makePath(leasesPath, LEASE_BASE_NAME)); String nodeName = ZKPaths.getNodeFromPath(path); builder.add(makeLease(path)); synchronized(this) { for(;;) { List children = client.getChildren().usingWatcher(watcher).forPath(leasesPath); if ( !children.contains(nodeName) ) { log.error("Sequential path not found: " + path); return InternalAcquireResult.RETRY_DUE_TO_MISSING_NODE; } if ( children.size() <= maxLeases ) { break; } if ( hasWait ) { long thisWaitMs = getThisWaitMs(startMs, waitMs); if ( thisWaitMs <= 0 ) { return InternalAcquireResult.RETURN_NULL; } wait(thisWaitMs); } else { wait(); } } } } finally { lock.release(); } return InternalAcquireResult.CONTINUE; } }
代码有点长,我们一点点分析,我们以客户端A、B、C同时进入获取锁逻辑来举例,这里Semaphore最大可允许2个客户端同时获取锁。
- 三个客户端同时进入switch逻辑,执行
internalAcquire1Lease()
方法 - 在
internalAcquire1Lease()
方法中,先使用lock.acquire()
执行加锁逻辑,这个lock是我们上一章讲的可重入锁逻辑,不再赘述 - 这个
lock
是哪里初始化的呢?在InterProcessSemaphoreV2
构造函数中:lock = new InterProcessMutex(client, ZKPaths.makePath(path, LOCK_PARENT));
this.maxLeases = (count != null) ? count.getCount() : maxLeases;
- 注意lock的path为:
/semaphore/semaphore_01/locks
, maxLeases为传入的3 - 此时客户端A、B、C执行
lock.acquire()
只会有一个可以成功获取锁,其他两个客户端会wait()
到了这里,Zookeeper中就会有三条类似于:/semaphores/semaphore_01/locks/_c_a9302e20-de9c-4356-923a-274664d7676c-lock-0000000001
的数据
接着客户端A继续往下执行,具体逻辑如图:
- 首先是客户端A创建一个/locks/lock-xxxx01节点,获取锁成功过
- 接着创建临时顺序节点/leases/lease-xxxx01
- 判断/leases目录下节点数量(数量为1)是否小于等于maxLeases(maxLeases=2)
- 如果成功则退出循环,释放/locks加的锁,返回
InternalAcquireResult.CONTINUE
,状态,执行lock.release()
通知客户端B、C争抢/locks
节点下的锁 - 此时如果客户端B抢到锁,然后同样创建/leases/lease-xxxx02,
- 判断/leases目录下节点数量(数量为2)是否小于等于maxLeases(maxLeases=2)
- 客户端B也退出循环,返回
InternalAcquireResult.CONTINUE
,接着客户端C来获取锁 - 客户端C执行时,判断/leases目录下节点数量(数量为3)是否小于等于maxLeases(maxLeases=2)
此时客户端C会进入到wait()
方法,直到客户端A或者客户端B释放leases
节点下锁时才会重试获取锁。
返回InternalAcquireResult.CONTINUE
后,就标志获取锁成功。
Semaphore释放锁源码分析
我们直接看代码,释放锁代码很简单:
/** * Convenience method. Closes the lease * * @param lease lease to close */ public void returnLease(Lease lease) { Closeables.closeQuietly(lease); }
一路跟下去,可以看到closeQuietly
实现方法:
最后用到Lease
中的close()
方法,删除创建的/leases/lease-xxxx
节点数据,然后通知其他节点客户端,使用notifyAll()
ZK-Semaphore总结
一张图总结下:
05_Zookeeper中Semaphore实现原理 _1_.jpg
Zookeeper 非重入锁实现原理
之前听小伙伴说过一个面试题,请说出你所知道的非重入锁?
在脑子中搜索JDK中非重入锁?好像没有?
Zookeeper中提供了一个非重入锁的实现方式,实现原理使用Semaphore,最大允许1个客户端获取锁
按理说JDK中的Semaphore也可以实现此功能,哈哈,感觉自己被忽悠了,接着还是勉为其难的看下ZK中"非重入锁"的实现方式吧:
使用示例
/** * 测试非重入锁 */ private static void testSemaphoreMutex(CuratorFramework client) { InterProcessSemaphoreMutex semaphoreMutex = new InterProcessSemaphoreMutex(client, ZK_SEMAPHORE_LOCK_PATH); try { semaphoreMutex.acquire(); Thread.sleep(5000L); semaphoreMutex.release(); } catch (Exception e) { e.printStackTrace(); } }
源码分析
实际上就是设置maxLeases
为1,原理同上面的Semaphore
源码分析
Zookeeper读写锁原理
之前在Redisson中已经见过它对读写锁的实现,分别举例了读读、写写、读写、写读这几种场景锁的互斥性以及可重入性,这里也采用类似的场景分析。
读写锁使用案例
直接看案例,可以针对案例修改几种场景进行测试:
/** * @author wangmeng * @date 2020/03/30 18:59 */ public class Application { /** Zookeeper info */ private static final String ZK_ADDRESS = "yourZkIP:2181"; private static final String ZK_LOCK_PATH = "/locks/lock_01"; private static final String ZK_SEMAPHORE_LOCK_PATH = "/semaphore/semaphore_01"; private static final String ZK_READ_WRITE_LOCK_PATH = "/readwrite/readwrite_01"; public static void main(String[] args) throws InterruptedException { // 1.Connect to zk CuratorFramework client = CuratorFrameworkFactory.newClient( ZK_ADDRESS, new RetryNTimes(10, 5000) ); client.start(); System.out.println("zk client start successfully!"); Thread t1 = new Thread(() -> { testReadWriteLock(client); }, "t1"); Thread t2 = new Thread(() -> { testReadWriteLock(client); }, "t2"); t1.start(); t2.start(); } /** * 测试读写锁 */ private static void testReadWriteLock(CuratorFramework client) { InterProcessReadWriteLock readWriteLock = new InterProcessReadWriteLock(client, ZK_READ_WRITE_LOCK_PATH); try { // 获取读锁 InterProcessMutex readLock = readWriteLock.readLock(); readLock.acquire(); System.out.println(Thread.currentThread().getName() + " hold read lock"); Thread.sleep(5000); readLock.release(); System.out.println(Thread.currentThread().getName() + " release read lock"); // 获取写锁 InterProcessMutex writeLock = readWriteLock.writeLock(); writeLock.acquire(); System.out.println(Thread.currentThread().getName() + " hold write lock"); Thread.sleep(5000); writeLock.release(); System.out.println(Thread.currentThread().getName() + " release write lock"); } catch (Exception e) { e.printStackTrace(); } } }
运行后结果:
image.png
从结果可以看出来: 读读不互斥、 写写互斥
读写锁源码解析
首先看下InterProcessReadWrite
的构造函数:
public class InterProcessReadWriteLock { public InterProcessReadWriteLock(CuratorFramework client, String basePath) { writeMutex = new InternalInterProcessMutex ( client, basePath, WRITE_LOCK_NAME, 1, new SortingLockInternalsDriver() { @Override public PredicateResults getsTheLock(CuratorFramework client, Listchildren, String sequenceNodeName, int maxLeases) throws Exception { return super.getsTheLock(client, children, sequenceNodeName, maxLeases); } } ); readMutex = new InternalInterProcessMutex ( client, basePath, READ_LOCK_NAME, Integer.MAX_VALUE, new SortingLockInternalsDriver() { @Override public PredicateResults getsTheLock(CuratorFramework client, List children, String sequenceNodeName, int maxLeases) throws Exception { return readLockPredicate(children, sequenceNodeName); } } ); } }
因为ZK中的读写锁底层也是基于第一讲中InterProcessMutex.internalLock()
去实现的,所以InterProcessReadWriteLock
读锁和写锁分别初始化了maxLeases
及重写了getsTheLock()
方法,这个方法是判断是否可以获取锁的核心代码,类似于:
int ourIndex = children.indexOf(sequenceNodeName); boolean getsTheLock = ourIndex < maxLeases;
不清楚的可以回头看看:【分布式锁】06-Zookeeper实现分布式锁:可重入锁源码分析
另外写锁和读锁的path会有区别:
private static final String READ_LOCK_NAME = "__READ__"; private static final String WRITE_LOCK_NAME = "__WRIT__";
写锁的maxLeases是1,加了写锁就不允许再加其他读锁(但可重入加写锁和读锁)
读锁的maxLeases是Integer.MAX_VALUE,读读锁不互斥
读读互斥及重入
查看读锁中判断获取锁成功的核心逻辑:
private PredicateResults readLockPredicate(Listchildren, String sequenceNodeName) throws Exception { // 如果当前线程获取写锁,那么直接返回true,获取读锁成功 if ( writeMutex.isOwnedByCurrentThread() ) { return new PredicateResults(null, true); } int index = 0; int firstWriteIndex = Integer.MAX_VALUE; int ourIndex = Integer.MAX_VALUE; for ( String node : children ) { if ( node.contains(WRITE_LOCK_NAME) ) { firstWriteIndex = Math.min(index, firstWriteIndex); } else if ( node.startsWith(sequenceNodeName) ) { ourIndex = index; break; } ++index; } StandardLockInternalsDriver.validateOurIndex(sequenceNodeName, ourIndex); boolean getsTheLock = (ourIndex < firstWriteIndex); String pathToWatch = getsTheLock ? null : children.get(firstWriteIndex); return new PredicateResults(pathToWatch, getsTheLock); }
如果客户端A已经获取了读锁
此时客户端B再来获取读锁
- children:[xxx_READ_0001, xxxx_READ_0002],此时都是读锁,不包含WRITE锁标识
- sequenceNodeName就是node创建的节点名称,这里ourIndex=index0
- ourIndex
执行debug流程如下图:
因为读读不互斥,所以这里读锁也是可重入的
写读互斥及重入
上面已经分析过读读的逻辑了,这里接着按照上面的代码分析下读写的逻辑:
客户端A加写锁成功
客户端B加读锁
node.contains(WRITE_LOCK_NAME)
,此时客户端B中含有WRITE标识- firstWriteIndex = Math.min(index, firstWriteIndex)=0
- boolean getsTheLock = (ourIndex < firstWriteIndex);
此时ourIndex = Integer.MAX_VALUE,判断条件不成立,所以加写锁失败
不同客户端写读锁互斥
接着看看同一个客户端逻辑:
if ( writeMutex.isOwnedByCurrentThread() ) { return new PredicateResults(null, true); }
如果当前线程获取了写锁,那么再加读写直接返回成功。
所以同一个客户端同一线程:先加写锁、再加读锁可重入,这一点和Redisson中是一致的,具体可以看:【分布式锁】04-使用Redisson实现ReadWriteLock原理
写写互斥及重入
写锁完全可以看做成InterProcessMutex
,这里maxLeases
为1,所以同一个线程写是可重入的,不同客户端获取锁时互斥的
读写互斥及重入
客户端A加读锁
客户端B加写锁
同样道理,此时children数据结构如:
[_c_13bf63d6-43f3-4c2f-ba98-07a641d351f2-__READ__0000000004,
_c_73b60882-9361-4fb7-8420-a8d4911d2c99-__WRIT__0000000005]
判断写锁在"/readwrite/readwrite_01"目录下的位置,不是在首位,加锁失败
可重入锁也是同样原理,不可重入
Zookeeper中MultiLock实现原理
我们在Redisson中已经见过MultiLock原理,其中Redissoon为了实现RedLock
算法,也有MultiLock的实现(可以参考【分布式锁】03-使用Redisson实现RedLock原理)当多个资源需要统一加锁的时候,我们就可以使用MultiLock
Zookeeper中的MultiLock实现非常简单,就是依次加锁,实现如下图:
总结
Zookeeper实现分布式锁的相关原理全都讲完了,仔细阅读Curator源码觉得还挺有意思,再来会先Curator官网那句话:
Guava is to Java what Curator is to Zookeeper
Curator真的很强,分布式锁实现的很棒!
申明
本文章首发自本人公众号:壹枝花算不算浪漫,如若转载请标明来源!
感兴趣的小伙伴可关注个人公众号:壹枝花算不算浪漫