- 基于Python爬虫的豆瓣电影影评数据可视化分析
wp_tao
Python副业接单实战项目python爬虫信息可视化
文章目录前言一、数据抓取二、数据可视化1.绘制词云图2.读入数据总结前言本文以电影《你好,李焕英》在豆瓣上的影评数据为爬取和分析的目标,利用python爬虫技术对影评数据进行了爬取,使用pandas库进行了数据清洗,使用jieba库进行分词,使用collections库进行词频统计,使用wordcloud库绘制词云图,使用matplotlib库绘制了评论人所在城市占比饼状图,并使用matplotl
- SnowNLP 情感分析
Taichi呀
python开发语言
#-*-coding:utf-8-*-importsysfromsnownlpimportSnowNLPfromjiebaimportanalysefromjiebaimportpossegtxt=u'''在文学的海洋中,有一部名为《薄雾》的小说,它犹如一颗闪耀的明珠,让人过目难忘。这部作品讲述了一段发生在上世纪初的跨越阶级的爱情故事。在这篇文学短评中,我们将探讨这部小说所展现的情感与人性,以及它
- pip工具安装第三方库
nfenghklibra
pippython
使用pip+cmd引入第三方库pip是Python包管理工具,提供了对Python包的查找、下载、安装、卸载的功能。注意:pip已内置于Python3.4和2.7及以上版本,其他版本需另行安装常规命令:pipinstall安装第三方库的库名(以json为例)pipinstalljson指定版本号:pipinstall库名==库的版本号pipinstalljieba==0.42.1卸载库:pipun
- python 词云示例
布道天下
python
python词云示例以2021年中央1号文件和政府工作报告文件为例,输出50个关键词。#testPython.pyimportjiebaimportwordclouddefoutputWordCloud(text,outPngName):#配置词云对象参数temp=wordcloud.WordCloud(width=1000,height=1000,font_path="msyh.ttc",max
- NLP_jieba中文分词的常用模块
Hiweir ·
NLP_jieba的使用自然语言处理中文分词人工智能nlp
1.jieba分词模式(1)精确模式:把句子最精确的切分开,比较适合文本分析.默认精确模式.(2)全模式:把句子中所有可能成词的词都扫描出来,cut_all=True,缺点:速度快,不能解决歧义(3)paddle:利用百度的paddlepaddle深度学习框架.简单来说就是使用百度提供的分词模型.use_paddle=True.(4)搜索引擎模式:在精确模式的基础上,对长词再进行切分,提高召回率,
- Python的情感词典情感分析和情绪计算
yava_free
python大数据人工智能
一.大连理工中文情感词典情感分析(SentimentAnalysis)和情绪分类(EmotionClassification)都是非常重要的文本挖掘手段。情感分析的基本流程如下图所示,通常包括:自定义爬虫抓取文本信息;使用Jieba工具进行中文分词、词性标注;定义情感词典提取每行文本的情感词;通过情感词构建情感矩阵,并计算情感分数;结果评估,包括将情感分数置于0.5到-0.5之间,并可视化显示。目
- 使用Python和Jieba库进行中文情感分析:从文本预处理到模型训练的完整指南
快撑死的鱼
Python算法精解python人工智能开发语言
使用Python和Jieba库进行中文情感分析:从文本预处理到模型训练的完整指南情感分析(SentimentAnalysis)是自然语言处理(NLP)领域中的一个重要分支,旨在从文本中识别出情绪、态度或意见等主观信息。在中文文本处理中,由于语言特性不同于英语,如何高效、准确地分词和提取关键词成为情感分析的关键步骤之一。在这篇文章中,我们将深入探讨如何使用Python和Jieba库进行中文情感分析,
- 关键字提取
蓝色滑行
关键词提取importpandasaspdimportjieba.analyse#导入关键词库读取文本fn=open('d:/collect.txt',encoding='UTF-8')string_data=fn.read()fn.close()关键词提取"TF-IDF(termfrequency-inversedocumentfrequency)是一种针对关键字的统计分析方法,用来评估关键字或
- NLP面试题(9月4日笔记)
好好学习Py
自然语言处理自然语言处理笔记人工智能
常见的分词方法分词是将连续的子序列按照一定的规则进行重新组合形成词序列的过程,是NLP领域内最基础的内容。常见的分词方法有jieba分词,jieba分词支持多种分词模模式:精确模式,全模式,搜索引擎模式。1)精确模式:将句子最精确的进行切分,适合文本分析,在日常工作中最为常用;2)全模式:将句子中所有可以成词的词语都扫描出来,速度非常快,但不能消除歧义。3)搜索引擎模式:在精确模式的基础上,对长词
- 自动安装第三方库python,python第三方库自动安装脚本
杏仁菌子
自动安装第三方库python
#python第三方库自动安装脚本,需要在cmd中运行此脚本#BatchInstall.pyimportoslibs={"numpy","matplotlib","pillow","sklearn","requests",\"jieba","beautifulsoup4","wheel","networkx","sympy",\"pyinstaller","django","flask","wer
- Python爬虫案例五:将获取到的文本生成词云图
躺平的花卷
python爬虫开发语言
基础知识:#词云图wordcloud#1、导包jiebawordcloudimportjiebafromwordcloudimportWordClouddata='全年经济社会发展主要目标任务圆满完成'data_list=list(jieba.cut(data))#print(data_list)#generator数据类型#2、构造词云图样式===》虚拟的词云图wb=WordCloud(widt
- 文本数据分析-(TF-IDF)(2)
红米煮粥
数据分析tf-idfpython
文章目录一、TF-IDF与jieba库介绍1.TF-IDF概述2.jieba库概述二、TF-IDF与jieba库的结合1.结合2.提取步骤三,代码实现1.导入必要的库读取文件:3.将文件路径和内容存储到DataFrame4.加载自定义词典和停用词5.分词并去除停用词TF-IDF(TermFrequency-InverseDocumentFrequency)与jieba库在文本处理领域有着紧密的联系
- 文本分析之关键词提取(TF-IDF算法)
SEVEN-YEARS
tf-idf
键词提取是自然语言处理中的一个重要步骤,可以帮助我们理解文本的主要内容。TF-IDF(TermFrequency-InverseDocumentFrequency)是一种常用的关键词提取方法,它基于词频和逆文档频率的概念来确定词语的重要性。准备工作首先,我们需要准备一些工具和库,包括Pandas、jieba(结巴分词)、sklearn等。Pandas:用于数据处理。jieba:用于中文分词。skl
- python爬虫521
PUTAOAO
python爬虫开发语言
爬虫521记录记录最近想学爬虫,尝试爬取自己账号下的文章标题做个词云csdn有反爬机制原理我就不说啦大家都写了看到大家结果是加cookie但是我加了还是521报错尝试再加了referer就成功了(╹▽╹)importmatplotlibimportrequestsfromwordcloudimportWordCloudimportmatplotlib.pyplotaspltimportjieba#
- Boss直聘招聘数据分析岗位小分析
数据闲逛人
【数据分析项目】数据分析数据挖掘
嗨喽!大家好,我是“流水不争先,争得滔滔不绝”的翀,18双非本科生一枚,正在努力!欢迎大家来交流学习,一起学习数据分析,希望我们一起好好学习,天天向上,目前是小社畜一枚~~前言完整数据包括一些简单的分析,做得很简单,因为累了要睡了详细文档与数据下载超链接importpandasaspdimportmatplotlib.pyplotaspltimportjiebafromcollectionsimp
- Python数据可视化词云展示周董的歌
PathonDiss
马上开始了,你准备好了么准备工作环境:Windows+Python3.6IDE:根据个人喜好,自行选择模块:Matplotlib是一个Python的2D数学绘图库pipinstallmatplotlibimportmatplotlib.pyplotaspltjieba中文分词库pipinstalljiebaimportjiebawordcloud词云库pipinstallwordcloudfrom
- 自然语言处理NLP之中文分词和词性标注
陈敬雷-充电了么-CEO兼CTO
自然语言处理
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录一、Python第三方库jieba(中文分词、词性标注)特点二、jieba中文分词的安装关键词抽取基于TF-IDF算法TF-IDF原理介绍基于TextRank算法的关键词抽取textRank算法原理介绍总结一、Python第三方库jieba
- 今日无更新
我的昵称违规了
学校的一个会忙得昏天黑地。明天有自己的一个发表,还要准备PPT,根据原来的改改就好……这周真的是有点繁杂了,搞定之后连着四五月份要写两篇论文,再加上五月底的课程论文还有紧接着的文献综述,看样子要疯……现在梳理一下自己手里的锤子:转到Pytorch,使用AllenNLP了解Transformer、了解LSTM了解jieba等分词工具了解Gensim等NLP处理工具接下来要做的:基于AllenNLP搞
- python语料处理_Python中文语料批量预处理手记
weixin_39588445
python语料处理
手记实用系列文章:语料预处理封装类:#coding=utf-8importosimportjiebaimportsysimportreimporttimeimportjieba.possegaspsegsys.path.append("../")jieba.load_userdict("../Database/userdict.txt")#加载自定义分词词典'''title:利用结巴分词进行文本语
- jieba安装和使用教程
Cachel wood
自然语言处理nlpwindows开发语言jieba知识图谱neo4j人工智能python
文章目录jieba安装自定义词典关键词提取词性标注jieba安装pipinstalljiebajieba常用的三种模式:精确模式,试图将句子最精确地切开,适合文本分析;全模式,把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义;搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。可使用jieba.cut和jieba.cut_for_search方法
- pg_jieba在windows上编译安装
kmblack1
windowspg_jieba
2024.02.03修改,添加关键词增加了独占锁.1源码下载cdD:\buildgitclonehttps://github.com/jaiminpan/pg_jiebagitclone--depth=10--branch=mastergit://github.com/yanyiwu/cppjieba.git#复制cppjieba/deps至pg_jieba/libjieba#复制cppjieba
- 报告pg_jieba中的bug
kmblack1
bug
PostgreSQL是多进程,pg_jieba的字典数据在每个进程中都加载了比较耗费内存,个人觉得字典数据应该加载在share_buffers中.使用字典中不存在的关键字"新华三"证明如下:1启动二个psql客户端,分别为A和B,在A和B中分别执行selectto_tsvector('public.jiebacfg','新华三');输出,A和B结果完全相同to_tsvector----------
- golang-centos的镜像
carl-Xiao
对于Go的学习
why项目引用了github上的jieba分词golang版本,windows和centos都正常启动,但是ubantu等不能启动,总是提示缺少文件等错误于是干脆重新制作一个centos的镜像解决问题DockerfileFROMcentos:7Labelauthor=xiaobowenRUNyuminstall-ygcc-c++#WORKDIRWORKDIR/go#envENVPATH/usr/l
- 【7-1】实验——实体统一和歧义消除
铁盒薄荷糖
知识图谱实战6+3天windowsc#开发语言
一、使用jieba完成公司名的实体统一#核心代码:建立main_extract,当输入公司名,返回会被统一的简称defmain_extract(company_name,d_4_delete,stop_word,d_city_province):"""company_name输入的公司名stop_word停用词d_4_delete后缀名d_city_province地区"""company_nam
- django-haystack + whoosh + jieba 实现全文搜索
Vvvvvvv四季
网站实现全文搜索,并对中文进行分词搜索开发环境:Python3.7Django3.2需求:网站内有商品、求购2个模块,搜索栏输入塑料玩具时,希望优先搜索出匹配塑料玩具的信息,并同时匹配出塑料、玩具等信息,按照匹配度排序。同时当输入玩具塑料或塑料玩巨错别字时,同样能匹配到塑料玩具类的信息。匹配英文大小写分析1.djangoorm的模糊匹配icontains表示Mysql的like,不满足业务分词需求
- python笔记——jieba库
Toby不写代码
python学习python
文章目录一.概述二.jieba库使用三.实例一.概述1.jieba库概述jieba库是一个重要的第三方中文分词函数库,不是安装包自带的,需要通过pip指令安装pip3installjieba二.jieba库使用1.库函数jieba.cut(s)——精确模式,返回一个可迭代数据类型jieba.cut(s,cut_all=True)——全模式,输出文本s中可能的单词jieba.cut_for_sear
- pytohn3+pycharm实现将txt文件 使用jieba分词 worldcloud制作词云 ——以《三国演义》的txt文件为例
dlwlrmaIU
代码以及释义如下:```importjiebaimportjieba.analyseimportwordcloudfromPILimportImage,ImageSequenceimportnumpyasnpimportmatplotlib.pyplotaspltfromwordcloudimportWordCloud,ImageColorGeneratorimportjiebaimportjie
- 什么是jieba?
zg1g
easyui前端javascriptecmascript前端框架
简介jieba是一个流行的中文分词工具,它能够将一段文本切分成有意义的词语。它是目前Python中最常用的中文分词库之一,具有简单易用、高效准确的特点。该库能够处理多种文本分析任务,如情感分析、关键词提取、文本分类等。安装在使用jieba库之前,需要先安装它。可以通过pip命令来进行安装:pip install jieba分词方法jieba库提供了三种分词方法:精确模式、全模式和搜索引擎模式。精确
- 基于jieba库实现中文词频统计
kongxx
要实现中文分词功能,大家基本上都是在使用jieba这个库来实现,下面就看看怎样实现一个简单文本分词功能。安装python的工具,安装当然是使用pip安装了。pipinstalljieba使用先看一个小例子,下面的代码是从一个文本文件中分词并统计出现频率最高的10个单词,并打印到控制台。#!/usr/bin/envpython#-*-coding:utf-8-*-importjiebaimportj
- 基于jieba、TfidfVectorizer、LogisticRegression的垃圾邮件分类,模型平均得分为0.98左右(附代码和数据集)
代码讲故事
机器人智慧之心数据挖掘jiebaTfidfVectorizer垃圾邮件深度学习机器学习模型
基于jieba、TfidfVectorizer、LogisticRegression的垃圾邮件分类,模型平均得分为0.98左右(附代码和数据集)。垃圾邮件分类识别是一种常见的文本分类任务,旨在将收件箱中的邮件分为垃圾邮件和非垃圾邮件。以下是一些常用的技术和方法用于垃圾邮件分类识别:基于规则的过滤(Rule-basedFiltering):这种方法使用事先定义好的规则来筛选垃圾邮件。规则可以包括关键
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟