[Spark]Join的三种实现原理

Hash Join

先来看看这样一条SQL语句:select * from order,item where item.id = order.i_id,参与join的两张表是order和item,join key分别是item.id以及order.i_id。现在假设Join采用的是hash join算法,整个过程会经历三步:

  • 确定Build Table以及Probe Table:这个概念比较重要,Build Table会被构建成以join key为key的hash table,而Probe Table使用join key在这张hash table表中寻找符合条件的行,然后进行join链接。Build表和Probe表是Spark决定的。通常情况下,小表会被作为Build Table,较大的表会被作为Probe Table。
  • 构建Hash Table:依次读取Build Table(item)的数据,对于每一条数据根据Join Key(item.id)进行hash,hash到对应的bucket中(类似于HashMap的原理),最后会生成一张HashTable,HashTable会缓存在内存中,如果内存放不下会dump到磁盘中。
  • 匹配:生成Hash Table后,在依次扫描Probe Table(order)的数据,使用相同的hash函数(在spark中,实际上就是要使用相同的partitioner)在Hash Table中寻找hash(join key)相同的值,如果匹配成功就将两者join在一起。

[Spark]Join的三种实现原理_第1张图片

两点补充:

1 hash join的性能。从上面的原理图可以看出,hash join对两张表基本只扫描一次,算法效率是o(a+b),比起蛮力的笛卡尔积算法的a*b快了很多数量级。

2 为什么说Build Table要尽量选择小表呢?从原理上也看到了,构建的Hash Table是需要被频繁访问的,所以Hash Table最好能全部加载到内存里,这也决定了hash join只适合至少一个小表join的场景

看完了hash join的内核,我们来看一下这种单机的算法,在大数据分布式情况下,应该如何去做。目前成熟的有两套算法:broadcast hash joinshuffler hash join

Broadcast Hash Join

broadcast hash join是将其中一张小表广播分发到另一张大表所在的分区节点上,分别并发地与其上的分区记录进行hash join。broadcast适用于小表很小,可以直接广播的场景。

在执行上,主要可以分为以下两步:

1. broadcast阶段:将小表广播分发到大表所在的所有主机。分发方式可以有driver分发,或者采用p2p方式。

2. hash join阶段:在每个executor上执行单机版hash join,小表映射,大表试探;

需要注意的是,Spark中对于可以广播的小表,默认限制是10M以下。(参数是spark.sql.autoBroadcastJoinThreshold

[Spark]Join的三种实现原理_第2张图片

Shuffle Hash Join

当join的一张表很小的时候,使用broadcast hash join,无疑效率最高。但是随着小表逐渐变大,广播所需内存、带宽等资源必然就会太大,所以才会有默认10M的资源限制。

所以,当小表逐渐变大时,就需要采用另一种Hash Join来处理:Shuffle Hash Join。

Shuffle Hash Join按照join key进行分区,根据key相同必然分区相同的原理,将大表join分而治之,划分为小表的join,充分利用集群资源并行化执行。

在执行上,主要可以分为以下两步:

1. shuffle阶段:分别将两个表按照join key进行分区,将相同join key的记录重分布到同一节点,两张表的数据会被重分布到集群中所有节点。

2. hash join阶段:每个分区节点上的数据单独执行单机hash join算法。

[Spark]Join的三种实现原理_第3张图片

刚才也说过,Hash Join适合至少有一个小表的情况,那如果两个大表需要Join呢?这时候就需要Sort-Merge Join了。

Sort-Merge Join

SparkSQL对两张大表join采用了全新的算法-sort-merge join,整个过程分为三个步骤:

1. shuffle阶段:将两张大表根据join key进行重新分区,两张表数据会分布到整个集群,以便分布式并行处理

2. sort阶段:对单个分区节点的两表数据,分别进行排序

3. merge阶段:对排好序的两张分区表数据执行join操作。join操作很简单,分别遍历两个有序序列,碰到相同join key就merge输出,否则继续取更小一边的key。

[Spark]Join的三种实现原理_第4张图片

仔细分析的话会发现,sort-merge join的代价并不比shuffle hash join小,反而是多了很多。那为什么SparkSQL还会在两张大表的场景下选择使用sort-merge join算法呢?

这和Spark的shuffle实现有关,目前spark的shuffle实现都适用sort-based shuffle算法,因此在经过shuffle之后partition数据都是按照key排序的。因此理论上可以认为数据经过shuffle之后是不需要sort的,可以直接merge。

结论:如何优化

经过上文的分析,可以明确每种Join算法都有自己的适用场景。在优化的时候,除了要根据业务场景选择合适的join算法之外,还要注意以下几点:

1 数据仓库设计时最好避免大表与大表的join查询。

2 SparkSQL也可以根据内存资源、带宽资源适量将参数spark.sql.autoBroadcastJoinThreshold调大,让更多join实际执行为broadcast hash join。

你可能感兴趣的:(spark)