4.1 案例背景
\[y = {x_1}^2 + {x_2}^2\]
4.2 模型建立
神经网络训练拟合根据寻优函数的特点构建合适的BP神经网络,用非线性函数的输入输出数据训练BP神经网络,训练后的BP神经网络就可以预测函数输出。遗传算法极值寻优把训练后的 BP 神经网络预测结果作为个体适应度值,通过选择、交叉和变异操作寻找函数的全局最优值及对应输入值。
网络结构:2-5-1
训练数据:3900,测试数据:100
4.3 编程实现
%% 基于神经网络遗传算法的系统极值寻优 %% 清空环境变量 clc clear input=2*randn(2,2000); output=sum(input.*input); [inputn,inputps]=mapminmax(input); [outputn,outputps]=mapminmax(output); %% BP网络训练 % %初始化网络结构 net=newff(inputn,outputn,[10,5]); % 配置网络参数(迭代次数,学习率,目标) net.trainParam.epochs=500; net.trainParam.lr=0.1; net.trainParam.goal=0.000004; %网络训练 net=train(net,inputn,outputn);
%% 初始化遗传算法参数 %初始化参数 maxgen=200; %进化代数,即迭代次数 sizepop=20; %种群规模 pcross=[0.4]; %交叉概率选择,0和1之间 pmutation=[0.2]; %变异概率选择,0和1之间 lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1 bound=[-5 5;-5 5]; %数据范围 individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体 avgfitness=[]; %每一代种群的平均适应度 bestfitness=[]; %每一代种群的最佳适应度 bestchrom=[]; %适应度最好的染色体 %% 初始化种群计算适应度值 % 初始化种群 for i=1:sizepop %随机产生一个种群 individuals.chrom(i,:)=Code(lenchrom,bound); x=individuals.chrom(i,:); %计算适应度 individuals.fitness(i)=fun(x,inputps,outputps,net); %染色体的适应度 end %找最好的染色体 [bestfitness bestindex]=min(individuals.fitness); bestchrom=individuals.chrom(bestindex,:); %最好的染色体 avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度 % 记录每一代进化中最好的适应度和平均适应度 trace=[avgfitness bestfitness];
%% 迭代寻优 % 进化开始 for i=1:maxgen if(mod(i,10)==0) i end % 选择 individuals=Select(individuals,sizepop); avgfitness=sum(individuals.fitness)/sizepop; %交叉 individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound); % 变异 individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,i,maxgen,bound); % 计算适应度 for j=1:sizepop x=individuals.chrom(j,:); %解码 individuals.fitness(j)=fun(x,inputps,outputps,net); end %找到最小和最大适应度的染色体及它们在种群中的位置 [newbestfitness,newbestindex]=min(individuals.fitness); [worestfitness,worestindex]=max(individuals.fitness); % 代替上一次进化中最好的染色体 if bestfitness>newbestfitness bestfitness=newbestfitness; bestchrom=individuals.chrom(newbestindex,:); end individuals.chrom(worestindex,:)=bestchrom; individuals.fitness(worestindex)=bestfitness; avgfitness=sum(individuals.fitness)/sizepop; trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度 end
function fitness = fun(x,inputps,outputps,net) % 函数功能:计算该个体对应适应度值 % x input 个体 % fitness output 个体适应度值 %数据归一化 x=x'; inputn_test=mapminmax('apply',x,inputps); %网络预测输出 an=sim(net,inputn_test); %网络输出反归一化 fitness=mapminmax('reverse',an,outputps);
%% 结果分析 [r,c]=size(trace); plot(trace(:,2),'r-'); title('适应度曲线','fontsize',12); xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12); axis([0,200,0,1])
x=bestchrom; disp([bestfitness x]);
fun([0,0],inputps,outputps,net) ans = 0.0507
在遗传算法中没有$y = {x_1}^2 + {x_2}^2$函数的原型,由于神经网络的误差,最后的计算值离真实值有一定偏差。
若将fun函数改为fitness=sum(x.*x);,则可以看到遗传算法取得良好效果,因此能用函数原型就一定要用,如果要用神经网络一定要有充足的训练数据,并指定足够小的误差。