MySQL Explain命令详解

简介

MySQL 提供了一个 EXPLAIN 命令, 它可以对SELECT语句进行分析, 并输出SELECT执行的详细信息, 以供开发人员针对性优化.

EXPLAIN 命令用法十分简单, 在 SELECT 语句前加上 Explain 就可以了, 例如:

EXPLAIN SELECT * from user_info WHERE id<300;

EXPLAIN 输出格式


EXPLAIN 命令的输出内容大致如下:


mysql> explain select * from user_info where id = 2
*************************** 1\. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 1
filtered: 100.00
Extra: NULL
1 row in set, 1 warning (0.00 sec)

各列的含义如下:


id: SELECT 查询的标识符. 每个 SELECT 都会自动分配一个唯一的标识符.

select_type: SELECT 查询的类型.

table: 查询的是哪个表

partitions: 匹配的分区

type: join 类型

possible_keys: 此次查询中可能选用的索引

key: 此次查询中确切使用到的索引.

ref: 哪个字段或常数与 key 一起被使用

rows: 显示此查询一共扫描了多少行. 这个是一个估计值.

filtered: 表示此查询条件所过滤的数据的百分比

extra: 额外的信息

接下来我们来重点看一下比较重要的几个字段.

select_type

select_type表示了查询的类型, 它的常用取值有:

SIMPLE:表示此查询不包含 UNION 查询或子查询

PRIMARY:表示此查询是最外层的查询

UNION:表示此查询是 UNION 的第二或随后的查询

DEPENDENT UNION:UNION 中的第二个或后面的查询语句, 取决于外面的查询

UNION RESULT:UNION 的结果

SUBQUERY:子查询中的第一个 SELECT

DEPENDENT SUBQUERY:子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.

最常见的查询类别应该是SIMPLE了, 比如当我们的查询没有子查询, 也没有 UNION 查询时, 那么通常就是SIMPLE类型

table

表示查询涉及的表或衍生表

type

type字段比较重要, 它提供了判断查询是否高效的重要依据依据. 通过type字段, 我们判断此次查询是全表扫描还是索引扫描等.

type 常用类型:

system:表中只有一条数据. 这个类型是特殊的const类型.

const:针对主键或唯一索引的等值查询扫描, 最多只返回一行数据. const 查询速度非常快, 因为它仅仅读取一次即可.

eq_ref:此类型通常出现在多表的 join 查询, 表示对于前表的每一个结果, 都只能匹配到后表的一行结果. 并且查询的比较操作通常是=, 查询效率较高.

ref:此类型通常出现在多表的 join 查询, 针对于非唯一或非主键索引, 或者是使用了最左前缀规则索引的查询.

range:表示使用索引范围查询, 通过索引字段范围获取表中部分数据记录. 这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中。

当type是range时, 那么 EXPLAIN 输出的ref字段为 NULL, 并且key_len字段是此次查询中使用到的索引的最长的那个.

index:表示全索引扫描(full index scan), 和 ALL 类型类似, 只不过 ALL 类型是全表扫描, 而 index 类型则仅仅扫描所有的索引, 而不扫描数据.

index类型通常出现在: 所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据. 当是这种情况时, Extra 字段 会显示Using index.

ALL:表示全表扫描, 这个类型的查询是性能最差的查询之一. 通常来说, 我们的查询不应该出现 ALL 类型的查询, 因为这样的查询在数据量大的情况下, 对数据库的性能是巨大的灾难. 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免.

type 类型的性能比较

通常来说, 不同的 type 类型的性能关系如下:

 ALL < index < range ~ index_merge < ref < eq_ref < const < system

ALL类型因为是全表扫描, 因此在相同的查询条件下, 它是速度最慢的.

而index类型的查询虽然不是全表扫描, 但是它扫描了所有的索引, 因此比 ALL 类型的稍快.

后面的几种类型都是利用了索引来查询数据, 因此可以过滤部分或大部分数据, 因此查询效率就比较高了.

possible_keys

possible_keys表示 MySQL 在查询时, 能够使用到的索引. 注意, 即使有些索引在possible_keys中出现, 但是并不表示此索引会真正地被 MySQL 使用到. MySQL 在查询时具体使用了哪些索引, 由key字段决定.

key

此字段是 MySQL 在当前查询时所真正使用到的索引.

key_len

表示查询优化器使用了索引的字节数. 这个字段可以评估组合索引是否完全被使用, 或只有最左部分字段被使用到.

key_len 的计算规则如下:

  • 字符串
    • char(n): n 字节长度
    • varchar(n): 如果是 utf8 编码, 则是 3 n + 2字节; 如果是 utf8mb4 编码, 则是 4 n + 2 字节.
  • 数值类型:
    • TINYINT: 1字节
    • SMALLINT: 2字节
    • MEDIUMINT: 3字节
    • INT: 4字节
    • BIGINT: 8字节
  • 时间类型
    • DATE: 3字节
    • TIMESTAMP: 4字节
    • DATETIME: 8字节
  • 字段属性: NULL 属性 占用一个字节. 如果一个字段是 NOT NULL 的, 则没有此属性.

我们来举两个简单的栗子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id < 3 AND product_name = 'p1' AND productor = 'WHH' 
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: range
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 9
          ref: NULL
         rows: 5
     filtered: 11.11
        Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)

表order_info有一个联合索引:

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

不过此查询语句WHERE user_id < 3 AND product_name = 'p1' AND productor = 'WHH'中, 因为先进行 user_id 的范围查询, 而根据最左前缀匹配原则, 当遇到范围查询时, 就停止索引的匹配, 因此实际上我们使用到的索引的字段只有user_id, 因此在EXPLAIN中, 显示的 key_len 为 9. 因为 user_id 字段是 BIGINT, 占用 8 字节, 而 NULL 属性占用一个字节, 因此总共是 9 个字节. 若我们将user_id 字段改为BIGINT(20) NOT NULL DEFAULT '0', 则 key_length 应该是8.

上面因为最左前缀匹配原则, 我们的查询仅仅使用到了联合索引的user_id字段, 因此效率不算高.

接下来我们来看一下下一个例子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id = 1 AND product_name = 'p1' ;
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: ref
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 161
          ref: const,const
         rows: 2
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)
rows

rows 也是一个重要的字段. MySQL 查询优化器根据统计信息, 估算 SQL 要查找到结果集需要扫描读取的数据行数.

这个值非常直观显示 SQL 的效率好坏, 原则上 rows 越少越好.

Extra

EXplain 中的很多额外的信息会在 Extra 字段显示, 常见的有以下几种内容:

Using filesort

当 Extra 中有Using filesort时, 表示 MySQL 需额外的排序操作, 不能通过索引顺序达到排序效果. 一般有Using filesort, 都建议优化去掉, 因为这样的查询 CPU 资源消耗大.

例如下面的例子:

mysql> EXPLAIN SELECT * FROM order_info ORDER BY product_name \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: index
possible_keys: NULL
          key: user_product_detail_index
      key_len: 253
          ref: NULL
         rows: 9
     filtered: 100.00
        Extra: Using index; Using filesort
1 row in set, 1 warning (0.00 sec)

我们的索引是

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

但是上面的查询中根据product_name来排序, 因此不能使用索引进行优化, 进而会产生Using filesort.

如果我们将排序依据改为ORDER BY user_id, product_name, 那么就不会出现Using filesort了. 例如:

mysql> EXPLAIN SELECT * FROM order_info ORDER BY user_id, product_name \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: index
possible_keys: NULL
          key: user_product_detail_index
      key_len: 253
          ref: NULL
         rows: 9
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)

Using index

"覆盖索引扫描", 表示查询在索引树中就可查找所需数据, 不用扫描表数据文件, 往往说明性能不错

Using temporary

查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高, 建议优化.

参考

MySQL 性能优化神器 Explain 使用分析

你可能感兴趣的:(MySQL Explain命令详解)