[2014亚马逊amazon] 在线笔试题 大于非负整数N的第一个回文数 Symmetric Number

1.题目

  如标题,求大于整数N(N>=0)的第一个回文数的字符串表示形式。

  这个题目也是当时笔试第一次见到,花了一个小时才做出了。慢慢总结还是挺简单的。

2.分析

  分析如下:

  (1)一位数N(9除外)。

    第一个大于N回文数等于N+1,如大于3的第一个回文数是4。

   [2014亚马逊amazon] 在线笔试题 大于非负整数N的第一个回文数 Symmetric Number

  (2)奇数位(一位数除外)

    需要看“左边反转数字”是否大于"右边数字"

     1)如果小于等于,则“左边+中间字母”组成的数字+1,再对称就可以。

     2)如果大于,则左边数字直接对称到右边就可以啦。

    [2014亚马逊amazon] 在线笔试题 大于非负整数N的第一个回文数 Symmetric Number

  (3)偶数位

    需要看“左边反转数字”是否大于"右边数字"

     1)如果小于等于,则左边组成的数字+1,再对称就可以。

     2)如果大于,则左边数字直接对称到右边就可以啦。

    [2014亚马逊amazon] 在线笔试题 大于非负整数N的第一个回文数 Symmetric Number

  (4)特殊情况(其实就一种)

    1)N=9,大于N的下一个回文数是11,即N+2

    2)奇数情况(位数!=1)。

      N1=99900,右边数字小于“左边,翻转数字”,直接对称,所以大于N1的第一个回文数是99999。(满足上面的讨论规则)

      N2=99999,右边数组大于等于“左边,翻转数字”,使用上面的讨论规则结果为1000 001 ,不正确。结果应该是N2+2

    3)偶数情况。

      N1=9900,右边数字小于“左边翻转数字”,直接对称,所以大于N1的第一个回文数是9999。(满足上面的讨论规则)

      N2=9999,右边数组大于等于“左边翻转数字”,使用上面的讨论规则结果为100 001 ,不正确。结果应该是N2+2

  所以,可以将特殊情况归结为一种,当整数N满足正则表达式"9+"时,大于N的第一个回文数是N+2。(9,99,999,9999,.....)

3.生成代码+测试代码

[2014亚马逊amazon] 在线笔试题 大于非负整数N的第一个回文数 Symmetric Number
 1 /**

 2  * 生成函数:

 3  *         firstBiggerPalindrome(String n)

 4  *         isLeftReverseBiggerRight(String left, String right)

 5  * 后期使用for循环校验N in [0,1000000)时的情况函数:

 6  *         nextPalindromeUseFor(int num, boolean[] Palindrome)

 7  *         isPalindrome(int num)

 8  * 

 9  * 在main函数内进行算法生成 与 for循环暴力生成的校验

10  * */

11 

12 public class Solution {

13     static String firstBiggerPalindrome(String n) { // 生成大于整数N(字符串表示)的第一个回文整数

14         n = String.valueOf(Integer.parseInt(n)); // 避免前导符"0",如n="009"

15         if (n.matches("9+")) // 特殊情况直接处理

16             return String.valueOf(Integer.parseInt(n) + 2);

17 

18         int len = n.length();

19         if (len == 1) // 长度为1

20             return String.valueOf(Integer.parseInt(n) + 1);

21         StringBuilder left = new StringBuilder(); // 左边

22         StringBuilder right = new StringBuilder(); // 右边

23         StringBuilder res = new StringBuilder(); // 结果

24         if ((len & 0x1) == 1) { // 奇数位

25             left.append(n.substring(0, len >> 1));

26             right.append(n.substring((len >> 1) + 1));

27             if (isLeftReverseBiggerRight(left.toString(), right.toString())) { // 如果左边翻转数字大于右边,直接翻转

28                 res.append(left);

29                 res.append(n.charAt(len >> 1));

30                 res.append(left.reverse().toString());

31             } else { // 否则,“左边+中间”数字加1,再翻转

32                 left.append(n.charAt(len >> 1));

33                 int num = Integer.parseInt(left.toString()) + 1;

34                 left.setLength(0);

35                 left.append(num);

36 

37                 res.append(num);

38                 res.append(left.deleteCharAt(left.length() - 1).reverse()

39                         .toString());

40             }

41         } else { // 偶数为

42             left.append(n.substring(0, len >> 1));

43             right.append(n.substring(len >> 1));

44             if (!isLeftReverseBiggerRight(left.toString(), right.toString())) {

45                 int num = Integer.parseInt(left.toString()) + 1;

46                 left.setLength(0);

47                 left.append(num);

48             }

49             res.append(left.toString());

50             res.append(left.reverse().toString());

51         }

52         return res.toString();

53     }

54 

55     static boolean isLeftReverseBiggerRight(String left, String right) { // 比较左边翻转后数字与右边数字的大小关系

56         StringBuilder sb = new StringBuilder(left);

57         if (sb.reverse().toString().compareTo(right) > 0)

58             return true;

59         return false;

60     }

61 

62     static String nextPalindromeUseFor(int num, boolean[] Palindrome) { // 求大于num的第一个回文数(最后的测试代码使用)

63         for (int i = num + 1; i < Palindrome.length; i++) {

64             if (Palindrome[i] == true)

65                 return String.valueOf(i);

66         }

67         return null;

68     }

69 

70     static boolean isPalindrome(int num) { // 判断一个数字是不是回文数字(最后的测试代码使用)

71         String str = String.valueOf(num);

72         int i = 0;

73         int j = str.length() - 1;

74         while (i < j) {

75             if (str.charAt(i) != str.charAt(j))

76                 return false;

77             i++;

78             j--;

79         }

80         return true;

81     }

82 

83     public static void main(String[] args) throws IOException {

84         int n = 1000000; // 只测试[0,1000000)以内的结果

85         boolean[] Palindrome = new boolean[n];    //默认为false

86         for (int i = 0; i < n; i++) {

87             if (isPalindrome(i))

88                 Palindrome[i] = true;    //如果是回文数字,标记为true。编译下一步校验,大于N的第一个回文数字

89         }

90 

91         for (int i = 0; i < n; i++) {

92             String val = firstBiggerPalindrome(String.valueOf(i));    //程序生成

93             if (Integer.parseInt(val) < n) {    //如果在[0,1000000)内,进行校验

94                 if (!val.equals(nextPalindromeUseFor(i, Palindrome)))

95                     System.out.println("BAD\t" + i);

96             }

97         }

98     }

99 }
View Code

通过代码中的验证程序,可以验证算法的正确性,呵呵,nice!!!

 

Java编程小细节:

  这个题目是字符串处理的,所以用了StringBuilder的reverse();注意一下

 1 import java.io.*;

 2 

 3 public class Solution {

 4     public static void main(String[] args) throws IOException {

 5         StringBuilder sb = new StringBuilder();

 6         sb.append("liuliuliu");

 7         System.out.println(sb.toString());

 8         sb.reverse();    //不需要返回值,也能翻转,记住啊!!!

 9         System.out.println(sb.toString());

10     }

11 }

 

你可能感兴趣的:(number)