LeetCode#101 Symmetric Tree

Problem Definition:

Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).

For example, this binary tree is symmetric:

    1

   / \

  2   2

 / \ / \

3  4 4  3

But the following is not:

    1

   / \

  2   2

   \   \

   3    3

Note:
Bonus points if you could solve it both recursively and iteratively.

 

Solution:

从根节点A开始,检查左右子节点的对称性:

  1._如果俩子节点都是空的,则树数对称的,返回True;

  2._如果有且仅有一个子节点是空的,则树不对称,返回False;

  3._如果俩子节点都不空,则先检查子节点包含的值是否相等,若不相等,则树不对称,False。若相等,则继续往下检查。

    关键是接下来检查哪些节点:a._B1向左到C1、B2向右到C2,对C1、C2这俩节点重复以上步骤。b._B1向右到D1、B2向左到D2,对D1、D2重复以上步骤。

    a._和b._两个结果相与,返回。

基于以上的递归描述,可以得到递归的解法

1 def isSymmetric(root):

2     return root==None or sym(root.left,root.right)

3 def sym(self,p,q):

4     if p==None or q==None:

5         return p==q

6     if p.val!=q.val:

7         return False

8     return sym(p.left,q.right) and sym(p.right,q.left)

 

也可以借助来把递归改成循环的形式:

 1 def isSymmetric(root):

 2     if root==None:

 3         return True

 4     sta=[]

 5     if root.left!=None:

 6         if root.right==None:

 7             return False

 8         sta+=[root.left,root.right]

 9     elif root.right!=None:

10         return False

11 

12     while sta:  #not empty

13         R=sta.pop()

14         L=sta.pop()

15         if R.val!=L.val:

16             return False

17 

18         if L.left!=None:

19             if R.right==None:

20                 return False

21             sta+=[L.left,R.right]

22         elif R.right!=None:

23             return False

24 

25         if L.right!=None:

26             if R.left==None:

27                 return False

28             sta+=[L.right,R.left]

29         elif R.left!=None:

30             return False

31     return True

 

注意不能用两种不同顺序(如“左中右”和“右中左”)遍历得到相同的值序列来确定树是否对称。

   就像不能用这两种顺序来确定一棵树。(要确定一棵树,至少要已知两种遍历序列,且其中一种是中序。)

 

你可能感兴趣的:(LeetCode)