《评人工智能如何走向新阶段》后记(再续5)

《评人工智能如何走向新阶段》后记(再续5)_第1张图片 由AI科技大本营下载自视觉中国
 

51.今年发表的由俄罗斯“脑机接口”公司(Neurobotics)和莫斯科物理技术学院(MIPT)研究的一种全新“脑机接口”算法。利用“脑机接口”将人脑(EEG)神经元与脑外深度学习网络连接起来(本例采用无需开颅植入大脑的非侵入电极)。将来期望用于治疗中风患者。

52.脸书(Facebook)和加州大学旧金山分校(UCSF)与今年7月发布“脑机接口”技术(刊载于《nature》子刊上),超越深度学习算法,该项新算法可实时读取人类语言,可用意念打字,可用人眼超高精度摄像。

53.图灵奖得主、美国工程院院士、美国人工智能协会(AAAI)及IEEE杂志Fellow(院士)Judea Pearl在2018年发表的一篇论文中指出:由于机器学习(含深度学习)理论的局限(它以统计学或盲模型的方式运行),使它无法成为强人工智能的基础;或对可执行的认知任务而言,该理论的缺陷限制了人工智能的发展。

54.钟义信教授推荐潘云鹤院士谈话:人工智能走向2.O的本质原因是人类世界由二元空间(P,H)变成三元空间(P,C,H),此时钟短评:“知彼知己,心中有底。”

55.英特尔研究院院长Richard(Rich)A.Uhlig谈在数据洪流中属于颠覆性技术的新型计算方式:量子计算、神经拟态、图计算、概率计算,其中神经拟态芯片模仿人脑运作机制,形成高能效神经网络系统,主要采用异步脉冲神经网络(SNN)去解决问题,可应用在机器人、网络、动态控制、稀疏编码、图式搜索、路径规划、约束满足等很多领域。

56.近年来以深度学习算法为代表的人工智能技术快速发展,迄今开发出来的深度学习算法约500多个,但深度学习算法并不完美,几乎完全以统计学或盲模型方式运行,其潜力已近尽头,人工智能的发展要求新算法出现:类脑算法、脑机接口算法、认知算法、量子算法…

57.要用开源思维建设北京智源(人工智能)研究院。研究怎么把在北京的人工智能领域最强的人才吸引、笼络在一起,建立一个开源社区,建设一个人工智能技术高地,发挥人才专长,引导他们把注意力放在“无人区”、放在人工智能基础领域,缩小在人工智能技术理论与应用上与世界水平的差距。

我们要真正把开源这件事做起来,培养人们的开源理念,了解开源的组织架构和哲学以及背后的技术,进行人工智能理论研究和应用创新,这对中国来说是非常有意义的。

在人工智能领域我们受益于全球智慧的结晶,希望在开源这种形式下,中国学者、研究人员和工程师能够做出贡献、跟踪进步!
(摘引北京智源研究院理事长张宏江发言)

58.近年来问世的深度学习算法已不止500个,从下列9个深度学习模型库所支持的深度学习模型来看,已多达1200个: 
① 脸书PH库支持26个模型;② 谷歌TH库148个模型;③ 谷歌TM库200个模型;④ IBM MAX库32个模型;⑤ 微软OMNX库45个模型;⑥ 新加坡JingYK(个人)MZ库368个模型;⑦ OpenⅤIN库135个模型;⑧ Sebastian RK库86个模型;⑨ GLUON-CV库45个模型。

合计9个深度学习模型库支持1189个深度学习模型。

59.随着大数据红利消失,以深度学习为代表的机器智能—感知智能水平日益接近天花板。深度学习算法是以数据驱动的统计模式,人工智能发展要突破深度学习,还需要知识,特别是符号化的知识,在后深度学习时代人工智能的核心应该是知识表示和确定性推理,人工智能最重要的能力是知识而非数据,需要研发以知识驱动的机器智能—认知智能。

所谓让机器具备认知智能是指让机器能够像人一样思考,体现在机器能够解释数据、解释过程、解释现象,体现在推理、规划等一系列人类所独有的认知能力上。如何让机器具备理解和解释的能力?知识图谱或以其为代表的知识工程的一系列技术,在认知智能实现中起到非常关键的作用。知识图谱本质上是一种大规模的语义网络(表达各种各样实体、概念及其间各类语义关联,且知识图谱规模更大)。有了知识图谱就能进行计算机建模。

60.以知识驱动的认知计算同样含有知识工程,上世纪80年代中期国内提出的知识工程是基于知识表达进行逻辑推理。新一代的知识工程关注于具身(embodiment)的人工智能,即与身体场景有直接关系,具身有一种思想可能改变规则使用权重,可能形成人际间的共识,这在医学中至关重要,要让患者参与决策(在医疗中如果患者不配合将十分麻烦)。两者知识工程不同,在于具身的认识,前者脱离人的认知环境,过去是从已知数据中获得已产生的规则,现在的知识工程从新产生的数据中挖掘、调整规则,以知识为基础的规则是创造性、跳跃式的。

你可能感兴趣的:(评人工智能如何走向新阶段?)