《评人工智能如何走向新阶段》后记(再续6)

《评人工智能如何走向新阶段》后记(再续6)_第1张图片 由AI科技大本营下载自视觉中国

 

61. 在2019深度学习开发者峰会上,百度发布基于飞桨的图学习框架(PaddleGraphLearning,PGL)。近年来深度神经网络推动了人工智能的发展,但在实际场景中有大量数据是在非欧式空间的,限制了深度神经网络的应用,而图神经网络在非结构化数据上有出色的处理能力。

百度发布的PGL利用飞桨独有的LodTensor特性,实现了高度并行的图神经网络消息传递机制,在性能上超越了PGL等现有图学习框架13倍(提速!)。依托飞桨核心框架+自研分布式图引擎,PGL可支持十亿节点百亿边的巨图训练。

62. 新老知识工程的区别:一是过去的知识工程是从已知数据中获得已产生的规则,新的知识工程是从新产生的数据中挖掘丶调整规则;二是新的知识工程是关注具身(embidument)的人工智能,即与身体场景有直接关系,要求关注人际关系,形成人际共识(如研发出来医疗人工智能新理论新算法要与临床医生在取得共识的基础上的处置结合起来,也要处理好医患关系)。

63. 每个神经元激励fire的阈值大约0.07伏,属于电气工程数量级(一节AA电池1.5伏),计算机与人脑增强交互应该很快推动人工智能进步。

64. 现在领导神经科学项目的是电气工程师,反而不是神经科学家。

65. 目前脑机接口算法还不精确,合理的实用化可能先在医护领域(如轮椅等截瘫病人设备)。俄罗斯科学家研发的脑机接口算法期望用于医护中风患者。

你可能感兴趣的:(评人工智能如何走向新阶段?)