mtcnn 基础网络架构

**mtcnn 基础网络架构**
```python
import torch
import torch.nn as nn
from collections import OrderedDict
import numpy as np

class Flatten(nn.Module):
    def __init__(self):
        super(Flatten,self).__init__()
    def forward(self, x):
        '''

        :param : 输入 batchsize 通道  高  宽
        :return: 输出 batchsize  后三者的乘积
        '''
        x = x.transpase(3,2).contigous()
        return x.view(x.size(0),-1)

class Pnet(nn.Module):

    def __init__(self):
        super(Pnet,self).__init__()
        self.feature = nn.Sequential(OrderedDict[
            ('conv1',nn.Conv2d(3,10,3,1)),
            ('prelu1',nn.PReLU(10)),
            ('pool1',nn.MaxPool2d(2,2,ceil_mode=True)),

            ('conv2',nn.Conv2d(10,16,3,1)),
            ('relu2',nn.PReLU(16)),

            ('conv3',nn.Conv2d(16,32,3,1)),
            ('prelu3',nn.PReLU(32))

        ])
        self.conv4_1 = nn.Conv2d(32,2,1,1)
        self.conv4_2 = nn.Conv2d(32,4,1,1)
        weigths = np.load('')[()]
        for n,p in self.named_parameters():
            p.data = torch.FloatTensor(weigths(n))
    def forword(self,x):
        '''
        :param :输入 batchsize 图片通道 3 高   宽
        :return:输出浮点型的tensor
        batchsize 4,
        atchsize 2

        '''
        x = self.feature(x)
        face_exit = self.conv4_1(x)
        xy_exit = self.conv4_2(x)
        face_exit = nn.functional.softmax(face_exit,dim=-1)
        return xy_exit,face_exit
class RNet(nn.Module):

    def __init__(self):

        super(RNet, self).__init__()

        self.features = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(3, 28, 3, 1)),
            ('prelu1', nn.PReLU(28)),
            ('pool1', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv2', nn.Conv2d(28, 48, 3, 1)),
            ('prelu2', nn.PReLU(48)),
            ('pool2', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv3', nn.Conv2d(48, 64, 2, 1)),
            ('prelu3', nn.PReLU(64)),

            ('flatten', Flatten()),
            ('conv4', nn.Linear(576, 128)),
            ('prelu4', nn.PReLU(128))
        ]))

        self.conv5_1 = nn.Linear(128, 2)
        self.conv5_2 = nn.Linear(128, 4)

        weights = np.load('')[()]
        for n, p in self.named_parameters():
            p.data = torch.FloatTensor(weights[n])

    def forward(self, x):
        """
         :param :输入 batchsize 图片通道 3 高   宽
        :return:输出浮点型的tensor
        batchsize 4,
        atchsize 2
        """
        x = self.features(x)
        face_exit = self.conv5_1(x)
        xy_exit = self.conv5_2(x)
        face_exit = nn.functional.softmax(face_exit, dim=-1)
        return xy_exit, face_exit

class ONet(nn.Module):

    def __init__(self):

        super(ONet, self).__init__()

        self.features = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(3, 32, 3, 1)),
            ('prelu1', nn.PReLU(32)),
            ('pool1', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv2', nn.Conv2d(32, 64, 3, 1)),
            ('prelu2', nn.PReLU(64)),
            ('pool2', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv3', nn.Conv2d(64, 64, 3, 1)),
            ('prelu3', nn.PReLU(64)),
            ('pool3', nn.MaxPool2d(2, 2, ceil_mode=True)),

            ('conv4', nn.Conv2d(64, 128, 2, 1)),
            ('prelu4', nn.PReLU(128)),

            ('flatten', Flatten()),
            ('conv5', nn.Linear(1152, 256)),
            ('drop5', nn.Dropout(0.25)),
            ('prelu5', nn.PReLU(256)),
        ]))

        self.conv6_1 = nn.Linear(256, 2)
        self.conv6_2 = nn.Linear(256, 4)
        self.conv6_3 = nn.Linear(256, 10)

        weights = np.load('')[()]
        for n, p in self.named_parameters():
            p.data = torch.FloatTensor(weights[n])

        def forward(self, x):
            """
          :param :输入 batchsize 图片通道 3 高   宽
          :return:输出浮点型的tensor
          batchsize 10,
          batchsize 4,
          atchsize 2
            """
            x = self.features(x)
            face_exit = self.conv6_1(x)
            xy_exit = self.conv6_2(x)
            dot_exit = self.conv6_3(x)
            face_exit = nn.functional.softmax(face_exit, dim=-1)
            return dot_exit, xy_exit, face_exit``

你可能感兴趣的:(人脸识别)