赖勇浩(http://laiyonghao.com)
这是我读工程硕士的时候完成课程作业时做的,放在 dropbox 的角落中生尘已经有若干年头了,最近 @shugelee 同学突然来了兴致搞验证码识别,问到我的时候我记起自己做过一点点东西,特发上来给他参考,并趁机补充了一下《Python也可以》系列。
def convert_to_bw(im):
im = im.convert("L")
im.save("sample_L.bmp")
im = im.point(lambda x: WHITE if x > 196 else BLACK)
im = im.convert('1')
im.save("sample_1.bmp")
return im
下图是灰度化的图像,可以看到背景仍然比较明显,有一层淡灰色:
def split(im):
assert im.mode == '1'
result = []
w, h = im.size
data = im.load()
xs = [0, 23, 57, 77, 106, 135, 159, 179, 205, 228, w]
ys = [0, 22, 60, 97, 150, h]
for i, x in enumerate(xs):
if i + 1 >= len(xs):
break
for j, y in enumerate(ys):
if j + 1 >= len(ys):
break
box = (x, y, xs[i+1], ys[j+1])
t = im.crop(box).copy()
box = box + ((i + 1) % 10, )
# save_32_32(t, 'num_%d_%d_%d_%d_%d'%box)
result.append((normalize_32_32(t, 'num_%d_%d_%d_%d_%d'%box), (i + 1) % 10))
return result
其中的 xs 和 ys 分别是横向和竖向切割的分界点,由手工测试后指定,t = im.crop(box).copy() 代码行是从指定的区域中“抠”出图片,然后通过 normalize_32_32 进行规范化。进行规范化是为了产生规则的训练和测试数据集,也是为了更容易地地计算出特征码。
f = open('train.data', 'wt')
print >>f, len(result), 256, 10
for input, output in result:
print >>f, input
print >>f, output
connectionRate = 1
learningRate = 0.008
desiredError = 0.001
maxIterations = 10000
iterationsBetweenReports = 100
inNum= 256
hideNum = 64
outNum=10
class NeuNet(neural_net):
def __init__(self):
neural_net.__init__(self)
neural_net.create_standard_array(self,(inNum, hideNum, outNum))
def train_on_file(self,fileName):
neural_net.train_on_file(self,fileName,maxIterations,iterationsBetweenReports,desiredError)
可以从代码中看到我们建立起一个输出层有 256 个神经元,隐藏层有 64 个神经元,输出层有 10 个神经元的ANN,其中神经层的连接率为 100%,学习率为 0.28,最大进行 10000 次迭代,并每隔 100 次报告一下学习结果。
if __name__ == "__main__":
ann = NeuNet()
ann.train_on_file("train.data")
ann.save("number_char_recognize2.net")
按照上面的程序,对网络进行训练和仿真测试,保存训练性能最好的一组网络权值,并保存到起来。
if __name__ == "__main__":
ann = NeuNet()
ann.create_from_file("number_char_recognize.net")
data = read_test_data()
for k, v in data.iteritems():
k = string_to_list(k)
v = string_to_list(v)
result = ann.run(k)
print euclidean_distance(v, result)
其实 ann.create_from_file 是从文件中读取存档,创建人工神经网络,然后使用 read_test_data 函数读取测试数据,并通过循环对每一个测试数据和相应的期望值转换为 NN 的输入格式,然后使用 ann.run 函数调用神经网络测试,对测试结果与期望值进行欧氏距离计算,对其中的两个测试用例,果如下: