受杰森的《Almost Looks Like Work》启发,我来展示一些病毒传播模型。需要注意的是这个模型并不反映现实情况,因此不要误以为是西非可怕的传染病。相反,它更应该被看做是某种虚构的僵尸爆发现象。那么,让我们进入主题。
这就是SIR模型,其中字母S、I和R反映的是在僵尸疫情中,个体可能处于的不同状态。
至于β(beta)和γ(gamma):
S′=−βIS告诉我们健康者变成僵尸的速率,S′是对时间的导数。
I′=βIS−γI告诉我们感染者是如何增加的,以及行尸进入移除态速率(双关语)。
R′=γI只是加上(gamma I),这一项在前面的等式中是负的。
上面的模型没有考虑S/I/R的空间分布,下面来修正一下!
一种方法是把瑞典和北欧国家分割成网格,每个单元可以感染邻近单元,描述如下:
实验完整代码如下:
Main.py
# -*- coding: utf-8 -*-
import numpy as np
import math
import matplotlib.pyplot as plt
from matplotlib import rcParams
import matplotlib.image as mpimg
from PIL import Image
rcParams['font.family'] = 'serif'
rcParams['font.size'] = 16
rcParams['figure.figsize'] = 12, 8
beta = 0.010
gamma = 1
def euler_step(u, f, dt):
return u + dt * f(u)
def f(u):
S = u[0]
I = u[1]
R = u[2]
new = np.array([-beta*(S[1:-1, 1:-1]*I[1:-1, 1:-1] + \
S[0:-2, 1:-1]*I[0:-2, 1:-1] + \
S[2:, 1:-1]*I[2:, 1:-1] + \
S[1:-1, 0:-2]*I[1:-1, 0:-2] + \
S[1:-1, 2:]*I[1:-1, 2:]),
beta*(S[1:-1, 1:-1]*I[1:-1, 1:-1] + \
S[0:-2, 1:-1]*I[0:-2, 1:-1] + \
S[2:, 1:-1]*I[2:, 1:-1] + \
S[1:-1, 0:-2]*I[1:-1, 0:-2] + \
S[1:-1, 2:]*I[1:-1, 2:]) - gamma*I[1:-1, 1:-1],
gamma*I[1:-1, 1:-1]
])
padding = np.zeros_like(u)
padding[:,1:-1,1:-1] = new
padding[0][padding[0] < 0] = 0
padding[0][padding[0] > 255] = 255
padding[1][padding[1] < 0] = 0
padding[1][padding[1] > 255] = 255
padding[2][padding[2] < 0] = 0
padding[2][padding[2] > 255] = 255
return padding
img = Image.open('popdens2.png')
img = img.resize((img.size[0]/2,img.size[1]/2))
img = 255 - np.asarray(img)
imgplot = plt.imshow(img)
imgplot.set_interpolation('nearest')
S_0 = img[:,:,1]
I_0 = np.zeros_like(S_0)
I_0[309,170] = 1 # patient zero
R_0 = np.zeros_like(S_0)
T = 900 # final time
dt = 1 # time increment
N = int(T/dt) + 1 # number of time-steps
t = np.linspace(0.0, T, N) # time discretization
# initialize the array containing the solution for each time-step
u = np.empty((N, 3, S_0.shape[0], S_0.shape[1]))
u[0][0] = S_0
u[0][1] = I_0
u[0][2] = R_0
import matplotlib.cm as cm
theCM = cm.get_cmap("Reds")
theCM._init()
alphas = np.abs(np.linspace(0, 1, theCM.N))
theCM._lut[:-3,-1] = alphas
for n in range(N-1):
u[n+1] = euler_step(u[n], f, dt)
from images2gif import writeGif
keyFrames = []
frames = 60.0
for i in range(0, N-1, int(N/frames)):
imgplot = plt.imshow(img, vmin=0, vmax=255)
imgplot.set_interpolation("nearest")
imgplot = plt.imshow(u[i][1], vmin=0, cmap=theCM)
imgplot.set_interpolation("nearest")
filename = "outbreak" + str(i) + ".png"
plt.savefig(filename)
keyFrames.append(filename)
images = [Image.open(fn) for fn in keyFrames]
gifFilename = "outbreak.gif"
writeGif(gifFilename, images, duration=0.3)
plt.clf()
image2gif.py
""" MODULE images2gif
Provides a function (writeGif) to write animated gif from a series
of PIL images or numpy arrays.
This code is provided as is, and is free to use for all.
Almar Klein (June 2009)
- based on gifmaker (in the scripts folder of the source distribution of PIL)
- based on gif file structure as provided by wikipedia
"""
try:
import PIL
from PIL import Image, ImageChops
from PIL.GifImagePlugin import getheader, getdata
except ImportError:
PIL = None
try:
import numpy as np
except ImportError:
np = None
# getheader gives a 87a header and a color palette (two elements in a list).
# getdata()[0] gives the Image Descriptor up to (including) "LZW min code size".
# getdatas()[1:] is the image data itself in chuncks of 256 bytes (well
# technically the first byte says how many bytes follow, after which that
# amount (max 255) follows).
def intToBin(i):
""" Integer to two bytes """
# devide in two parts (bytes)
i1 = i % 256
i2 = int( i/256)
# make string (little endian)
return chr(i1) + chr(i2)
def getheaderAnim(im):
""" Animation header. To replace the getheader()[0] """
bb = "GIF89a"
bb += intToBin(im.size[0])
bb += intToBin(im.size[1])
bb += "\x87\x00\x00"
return bb
def getAppExt(loops=0):
""" Application extention. Part that secifies amount of loops.
if loops is 0, if goes on infinitely.
"""
bb = "\x21\xFF\x0B" # application extension
bb += "NETSCAPE2.0"
bb += "\x03\x01"
if loops == 0:
loops = 2**16-1
bb += intToBin(loops)
bb += '\x00' # end
return bb
def getGraphicsControlExt(duration=0.1):
""" Graphics Control Extension. A sort of header at the start of
each image. Specifies transparancy and duration. """
bb = '\x21\xF9\x04'
bb += '\x08' # no transparancy
bb += intToBin( int(duration*100) ) # in 100th of seconds
bb += '\x00' # no transparant color
bb += '\x00' # end
return bb
def _writeGifToFile(fp, images, durations, loops):
""" Given a set of images writes the bytes to the specified stream.
"""
# init
frames = 0
previous = None
for im in images:
if not previous:
# first image
# gather data
palette = getheader(im)[1]
data = getdata(im)
imdes, data = data[0], data[1:]
header = getheaderAnim(im)
appext = getAppExt(loops)
graphext = getGraphicsControlExt(durations[0])
# write global header
fp.write(header)
fp.write(palette)
fp.write(appext)
# write image
fp.write(graphext)
fp.write(imdes)
for d in data:
fp.write(d)
else:
# gather info (compress difference)
data = getdata(im)
imdes, data = data[0], data[1:]
graphext = getGraphicsControlExt(durations[frames])
# write image
fp.write(graphext)
fp.write(imdes)
for d in data:
fp.write(d)
# # delta frame - does not seem to work
# delta = ImageChops.subtract_modulo(im, previous)
# bbox = delta.getbbox()
#
# if bbox:
#
# # gather info (compress difference)
# data = getdata(im.crop(bbox), offset = bbox[:2])
# imdes, data = data[0], data[1:]
# graphext = getGraphicsControlExt(durations[frames])
#
# # write image
# fp.write(graphext)
# fp.write(imdes)
# for d in data:
# fp.write(d)
#
# else:
# # FIXME: what should we do in this case?
# pass
# prepare for next round
previous = im.copy()
frames = frames + 1
fp.write(";") # end gif
return frames
def writeGif(filename, images, duration=0.1, loops=0, dither=1):
""" writeGif(filename, images, duration=0.1, loops=0, dither=1)
Write an animated gif from the specified images.
images should be a list of numpy arrays of PIL images.
Numpy images of type float should have pixels between 0 and 1.
Numpy images of other types are expected to have values between 0 and 255.
"""
if PIL is None:
raise RuntimeError("Need PIL to write animated gif files.")
images2 = []
# convert to PIL
for im in images:
if isinstance(im,Image.Image):
images2.append( im.convert('P',dither=dither) )
elif np and isinstance(im, np.ndarray):
if im.dtype == np.uint8:
pass
elif im.dtype in [np.float32, np.float64]:
im = (im*255).astype(np.uint8)
else:
im = im.astype(np.uint8)
# convert
if len(im.shape)==3 and im.shape[2]==3:
im = Image.fromarray(im,'RGB').convert('P',dither=dither)
elif len(im.shape)==2:
im = Image.fromarray(im,'L').convert('P',dither=dither)
else:
raise ValueError("Array has invalid shape to be an image.")
images2.append(im)
else:
raise ValueError("Unknown image type.")
# check duration
if hasattr(duration, '__len__'):
if len(duration) == len(images2):
durations = [d for d in duration]
else:
raise ValueError("len(duration) doesn't match amount of images.")
else:
durations = [duration for im in images2]
# open file
fp = open(filename, 'wb')
# write
try:
n = _writeGifToFile(fp, images2, durations, loops)
print n, 'frames written'
finally:
fp.close()
if __name__ == '__main__':
im = np.zeros((200,200), dtype=np.uint8)
im[10:30,:] = 100
im[:,80:120] = 255
im[-50:-40,:] = 50
images = [im*1.0, im*0.8, im*0.6, im*0.4, im*0]
writeGif('lala3.gif',images, duration=0.5, dither=0)
实验原始图像与实验后图像如下: