YARN学习

Apache Hadoop YARN (Yet Another Resource Negotiator,另一种资源协调者)是一种新的 Hadoop 资源管理器。

YARN把Job Tracker的两个主要功能(资源管理和作业调度/监控)分成了两个独立的服务程序——全局的资源管理(RM)和针对每个应用的应用 Master(AM),这里说的应用要么是传统意义上的MapReduce任务,要么是任务的有向无环图(DAG).

MRv1 的缺陷

MapReduce 的第一个版本既有优点也有缺点。MRv1 是目前使用的标准的大数据处理系统。但是,这种架构存在不足,主要表现在大型集群上。当集群包含的节点超过 4,000 个时(其中每个节点可能是多核的),就会表现出一定的不可预测性。其中一个最大的问题是级联故障,由于要尝试复制数据和重载活动的节点,所以一个故障会通过网络泛洪形式导致整个集群严重恶化。
但 MRv1 的最大问题是多租户。随着集群规模的增加,一种可取的方式是为这些集群采用各种不同的模型。MRv1 的节点专用于 Hadoop,所以可以改变它们的用途以用于其他应用程序和工作负载。当大数据和 Hadoop 成为云部署中一个更重要的使用模型时,这种能力也会增强,因为它允许在服务器上对 Hadoop 进行物理化,而无需虚拟化且不会增加管理、计算和输入/输出开销

Yarn的优点

大大减小了 JobTracker(也就是现在的 ResourceManager)的资源消耗,并且让监测每一个 Job 子任务 (tasks) 状态的程序分布式化了,更安全、更优美。
在新的 Yarn 中,ApplicationMaster 是一个可变更的部分,用户可以对不同的编程模型写自己的 AppMst,让更多类型的编程模型能够跑在 Hadoop 集群中,可以参考 hadoop Yarn 官方配置模板中的 mapred-site.xml 配置。
对于资源的表示以内存为单位 ( 在目前版本的 Yarn 中,没有考虑 cpu 的占用 ),比之前以剩余 slot 数目更合理。
老的框架中,JobTracker 一个很大的负担就是监控 job 下的 tasks 的运行状况,现在,这个部分就扔给 ApplicationMaster 做了,而 ResourceManager 中有一个模块叫做 ApplicationsMasters( 注意不是 ApplicationMaster),它是监测 ApplicationMaster 的运行状况,如果出问题,会将其在其他机器上重启。
Container 是 Yarn 为了将来作资源隔离而提出的一个框架。这一点应该借鉴了 Mesos 的工作,目前是一个框架,仅仅提供 java 虚拟机内存的隔离,hadoop 团队的设计思路应该后续能支持更多的资源调度和控制 , 既然资源表示成内存量,那就没有了之前的 map slot/reduce slot 分开造成集群资源闲置的尴尬情况。
Apache Hadoop 的经典版本 (MRv1)
YARN学习_第1张图片

新的 Hadoop MapReduce 框架(Yarn)架构
新Hadoop MapReduce 框架(Yarn)架构
图 2. 新的 Hadoop MapReduce 框架(Yarn)架构


新旧 Hadoop MapReduce 框架比对

让我们来对新旧 MapReduce 框架做详细的分析和对比,可以看到有以下几点显著变化:
首先客户端不变,其调用 API 及接口大部分保持兼容,这也是为了对开发使用者透明化,使其不必对原有代码做大的改变,但是原框架中核心的 JobTracker 和 TaskTracker 不见了,取而代之的是 ResourceManager, ApplicationMaster 与 NodeManager 三个部分。
我们来详细解释这三个部分,首先 ResourceManager 是一个中心的服务,它做的事情是调度、启动每一个 Job 所属的 ApplicationMaster、另外监控 ApplicationMaster 的存在情况。细心的读者会发现:Job 里面所在的 task 的监控、重启等等内容不见了。这就是 AppMst 存在的原因。ResourceManager 负责作业与资源的调度。接收 JobSubmitter 提交的作业,按照作业的上下文 (Context) 信息,以及从 NodeManager 收集来的状态信息,启动调度过程,分配一个 Container 作为 App Mstr
NodeManager 功能比较专一,就是负责 Container 状态的维护,并向 RM 保持心跳。
ApplicationMaster 负责一个 Job 生命周期内的所有工作,类似老的框架中 JobTracker。但注意每一个 Job(不是每一种)都有一个 ApplicationMaster,它可以运行在 ResourceManager 以外的机器上。

你可能感兴趣的:(分布式计算)