- 基于OpenCv的图片倾斜校正系统详细设计与具体代码实现
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于OpenCv的图片倾斜校正系统详细设计与具体代码实现1.背景介绍1.1图像处理的重要性在当今数字时代,图像处理技术在各个领域都扮演着重要角色。无论是在计算机视觉、模式识别、医学影像、遥感探测还是多媒体处理等领域,图像处理都是不可或缺的核心技术。通过对图像进行预处理、增强、分割、特征提取等操作,可以从图像中获取有价值的信息,为后续的分析和决策提供支持。1.2图像倾斜问题及其影响在实际应用中,由于
- 高通手机跑AI系列之——姿态识别
伊利丹~怒风
Qualcomm智能手机人工智能AI编程pythonarm
环境准备手机测试手机型号:RedmiK60Pro处理器:第二代骁龙8移动--8gen2运行内存:8.0GB,LPDDR5X-8400,67.0GB/s摄像头:前置16MP+后置50MP+8MP+2MPAI算力:NPU48TopsINT8&&GPU1536ALUx2x680MHz=2.089TFLOPS提示:任意手机均可以,性能越好的手机速度越快软件APP:AidLux2.0系统环境:Ubuntu2
- 高通手机跑AI系列之——实时头发识别
伊利丹~怒风
Qualcomm智能手机AI编程pythonarm人工智能
环境准备手机测试手机型号:RedmiK60Pro处理器:第二代骁龙8移动--8gen2运行内存:8.0GB,LPDDR5X-8400,67.0GB/s摄像头:前置16MP+后置50MP+8MP+2MPAI算力:NPU48TopsINT8&&GPU1536ALUx2x680MHz=2.089TFLOPS提示:任意手机均可以,性能越好的手机速度越快软件APP:AidLux2.0系统环境:Ubuntu2
- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- Ubuntu挂载新硬盘
Ubuntu挂载新硬盘的方法1、检查硬盘,确保系统能够正确识别它。可以使用以下命令查看已连接的硬盘列表:sudofdisk-l确保找到您要挂载的硬盘设备(例如,/dev/sdb)。2、创建挂载点:在Ubuntu系统中,通常将硬盘挂载到一个目录中。执行以下命令来创建挂载点目录:sudomkdir/mysdb这将在根目录创建名为"mysdb"的目录作为挂载点。3、执行以下命令来挂载硬盘到挂载点:sud
- 【问题解决】pnpm : 无法将“pnpm”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。
aPurpleBerry
问题解决前端
今天配置完poetry环境变量之后pnpm不能用了具体报错pnpm:无法将“pnpm”项识别为cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。所在位置行:1字符:1+pnpmrundev+~~~~+CategoryInfo:ObjectNotFound:(pnpm:String)[],CommandNotFoundException+F
- Python实战:自动在知乎回答点赞并采集内容的高阶爬虫教程
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言okhttp学习
✨写在前面:为什么做知乎自动化操作?知乎作为中国领先的知识问答平台,拥有大量结构化内容。对于研究舆情分析、情绪识别、用户画像,甚至产品舆情反馈采集的用户来说,如何自动获取知乎内容并进行交互行为(如点赞、回答),是一个非常实用的能力。本文将手把手带你用Python完成以下目标:✅自动登录知乎✅自动搜索某个关键词下的热门问题✅自动点赞高质量回答✅自动采集回答内容(文本、点赞数、评论数等)✅自动保存为本
- 人脸识别算法赋能园区无人超市安防升级
智驱力人工智能
算法人工智能边缘计算人脸识别智慧园区智慧工地智慧煤矿
人脸识别算法赋能园区无人超市安防升级正文在园区无人超市的运营管理中,传统安防手段依赖人工巡检或基础监控设备,存在响应滞后、误报率高、环境适应性差等问题。本文从技术背景、实现路径、功能优势及应用场景四个维度,阐述如何通过人脸识别检测、人员入侵算法及疲劳检测算法的协同应用,构建高效、精准的智能安防体系。一、技术背景:视觉分析算法的核心支撑人脸识别算法基于深度学习的卷积神经网络(CNN)模型,通过提取面
- VB.NET,C#字典对象来保存用户数据,支持大小写
专注VB编程开发20年
java开发语言
用这个保存的,登录时大小写不一样会不会无法识别根据你提供的SaveUsersToJson方法,我注意到你使用了JSON序列化来保存用户数据,但没有显式指定字典的比较器。这意味着在反序列化时,默认会使用区分大小写的比较器,导致大小写不同的用户名无法正确匹配。问题分析当你保存用户数据时:PrivateSubSaveUsersToJson(usersAsDictionary(OfString,UserI
- 渗透测试/漏洞赏金/src/黑客自学指南
Web渗透测试方法论方法论概要在此方法论中我们的目标范围仅是一个域名或一个子域名,因此你应当针对你测试范围内的每一个不确定其web服务的域名,子域名或ip进行测试1.首先确定web服务器所使用的技术,其次如果你成功识别到技术,那么接下来要知道如何利用检索的信息。·该技术版本有任何已知的漏洞吗·使用的是常规的技术吗?有什么有用的技巧以此来检索更多的信息?·有没有针对某种技术的专用的扫描器可以用?比如
- Python3获取5000个元素的单字符表
DechinPhy
技术背景此前考虑过一个问题,有没有办法获取到python里面所有定义好的单字符的表,比如我们获取5000个不一样的单字符,但是常用的chr(number)的方法里面包含了太多的非字母条目,比如缩进换行符等,也会被识别为长度为1的符号。因此需要在此基础上加一个isalpha()的判断。输出5000个字符示例先解释一下思路,我们还是遍历chr中所包含的字符,此时得到的是所有的长度为1的字符,再用str
- PS系统教程06-图片裁剪-详细版
有点。
psphotoshop
图片裁剪-详细版首先勾选图层-单机裁剪工具-删除裁剪像素背景颜色是和左边工作区颜色保持一致的。确定选择单机两下工作区中的√按下回车键缩小裁剪当你缩小裁剪之后再想扩大,那么扩大的部分就是背景颜色不勾选删除裁剪像素效果(裁剪完单机一下)这种情况是你进行裁剪单机一下的效果,说明就是还没有完全确定的状态。总结:只要不勾选删除裁剪像素就是会对裁剪过的部分进行预保留。内容识别不勾选勾选后
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- 用Python实现生信分析——序列搜索和比对工具详解
写代码的M教授
生信分析python
1.什么是序列搜索和比对工具?序列搜索和比对工具在生物信息学中用于在大型序列数据库中搜索与查询序列相似的序列,并进行比对分析。这些工具可以帮助研究人员识别与目标序列相关的已知序列,从而推测其功能、结构和进化关系。常见的序列搜索和比对工具包括:BLAST(BasicLocalAlignmentSearchTool):最常用的序列搜索工具,能够快速找到与查询序列相似的序列。FASTA:另一个常用的序列
- 生僻字处理工具类
兮动人
JavaSE实用工具java生僻字处理工具类生僻字
对于生僻字的处理可以用到下面相关编码查询汉字对应的编码:https://www.qqxiuzi.cn/bianma/zifuji.php文章目录生僻字处理概述功能介绍快速开始判断是否是生僻字utf8字符串转gbk伪码gb18030字符串转gbk伪码gbk伪码转utf8gbk伪码转gb18030生僻字处理概述在系统存储、跨系统报文或文件传输过程中,保证生僻字信息的完整性。功能介绍通过生僻字工具类,判
- Java底层原理:深入理解JVM类加载机制与反射机制
代码老y
javajvm开发语言
一、JVM类加载机制JVM类加载机制是Java运行时环境的重要组成部分,它负责将字节码文件加载到JVM内存中,并将其转换为可执行的类。类加载机制的实现涉及类加载器(ClassLoader)、类加载过程和类加载器的层次结构。(一)类加载器(ClassLoader)类加载器是Java类加载机制的核心组件,它负责加载字节码文件并将其转换为JVM能够识别的类。Java提供了三种内置的类加载器:启动类加载器
- C# WPF自定义窗口
XMJ2002
wpf
C#WPF自定义窗口书接上文,我们已经实现了如何利用百度智能云实现文字OCR功能,WPF制作文字OCR软件(一):本地图片OCR识别,最后整体的效果是要呈现在一个窗口上的,而WPF的默认窗口并不能符合我们的需求,能够自己定义的内容少,所以这篇文章将介绍如何自定义窗口。整体实现效果如下:一、自定义标题栏首先需要在窗口定义的时候加上WindowStyle="None"AllowsTransparenc
- 基于OpenCV-python的人脸识别系统
transuperb
完整代码opencvpython人工智能
importsysimportosimporttkinterastkfromtkinter.ttkimportStyleimportnumpyasnpimportcv2fromPILimportImageTk,ImageDraw,ImageFontfrompanel.models.tabulatorimportthemefromModelimport*fromtkinterimportttk,fi
- USB枚举过程详解
小米人儿
我的博客usb
USB枚举(Enumeration)是USB设备插入主机时,主机和设备之间自动进行的识别、配置和准备使用的过程。就像新员工入职第一天需要登记信息、领取工牌、配置电脑一样,USB设备也需要向主机“自我介绍”,告诉主机它是什么、能做什么、需要什么资源,主机才能正确使用它。举个真实例子:插入一个USB键盘物理连接:你把USB键盘插到电脑的USB口上。键盘内部的VBUS(电源线)获得5V电压,开始上电。键
- 基于OpenCV的银行卡识别
Yang了个羊
OpenCVopencv人工智能计算机视觉
一、设计思路1、预处理银行卡号序列模版,对其进行一系列形态学操作,继而进行轮廓识别,构建与各个轮廓所对应的数字元组。2、对将要识别的银行卡进行灰度处理、二值化、阈值处理,sobel算子边缘检测等预处理,再通过模版匹配方法找出与已知轮廓高度符合的数字。二、代码复现预操作:自定义一个cv_show函数,便于后来的图像展示。#绘图展示defcv_show(name,img):cv2.imshow(nam
- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- onnx-web + yolov8n 在视频流里做推理
CHEN_RUI_2200
人工智能YOLO
顺着我上一篇文章使用onnxruntime-web运行yolov8-nano推理继续说,有朋友在问能不能接入视频流动,实时去识别物品。首先使用getUserMedia获取摄像头视频流getUserMediaAPI可以访问设备的摄像头和麦克风。你可以使用这个API获取视频流,并将其显示在页面上的标签中。注意事项:浏览器支持:getUserMedia被现代浏览器大多数支持,但在一些旧版浏览器上可能不兼
- 手把手教你玩转Git安装与配置(附避坑指南)
techfluent
git
文章目录一、安装前必看的5个注意事项(血泪经验)二、超详细安装步骤分解(图文对照版)Windows用户专属流程Mac用户极简方案三、新手必做的3项基础配置1.设置全局用户信息(核心操作!)2.生成SSH密钥(免密登录神器)3.修改默认分支名称(2020年后重要变化!)四、常见翻车现场救援指南场景1:安装后命令无法识别场景2:提交显示匿名用户场景3:SSH连接总失败五、高阶玩家定制技巧(提升效率必备
- 基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)
QQ67658008
YOLO音视频qt桃子成熟水果成熟度检测系统
基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)文章目录调用示例加载预训练模型开始训练加载训练好的模型在验证集上评估加载训练好的模型文字及代码仅供参考。桃子成熟度分类检测数据集,主要用于桃子成熟度分类检测应用任务数据背景:模拟实际田间条件,涵盖多种可能影响桃子检测准确性的因素,如变化的自然光照强度、多果粘连现象以及由枝
- 合规无忧!Parasoft dotTEST自动生成.NET代码安全审计报告
慧都小项
Parasoft.NET静态代码分析Parasoft
在当今快速发展的软件开发领域,.NET开发团队面临着既要保证代码质量又要确保安全性的双重挑战。ParasoftdotTEST作为一款专为C#和VB.NET开发设计的自动化软件质量工具,为开发团队提供了全面的解决方案,帮助他们发现和修复缺陷,确保代码符合标准,同时将安全性融入开发流程中。一、提升生产力和代码质量ParasoftdotTEST能够自动执行广泛的静态代码分析,快速识别代码中的可靠性和安全
- docker: Error response from daemon: could not select device driver ““ with capabilities: [[gpu]].
这个错误表明Docker无法识别或加载支持GPU所需的设备驱动程序。以下是完整的解决方案和根本原因分析,结合最新技术和实践整理:根本原因分析缺少NVIDIAContainerToolkit现代Docker依赖NVIDIAContainerToolkit(前身为nvidia-docker2)实现GPU透传,未安装时无法调用GPU驱动。Docker配置未启用NVIDIA运行时需在daemon.json
- Python爬虫实战:研究TextBlob相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmlTextBlob
1.引言1.1研究背景与意义随着互联网技术的飞速发展,社交媒体已成为人们获取信息和表达观点的重要平台。每天在社交媒体上产生的海量文本数据蕴含着丰富的情感信息和社会舆情,分析这些文本情感倾向,有助于企业了解消费者对产品和服务的评价,政府部门监测社会舆论动态,研究机构探索公众对热点事件的态度。情感分析(SentimentAnalysis)作为自然语言处理的重要分支,旨在通过计算方法识别和提取文本中的主
- 3秒搞定DeepSeek数学公式转Word!学生党救星(附代码实测)
Uyker
python编辑器
适用场景:论文交稿deadline/报告美化/作业急救工具白嫖指南:免费+免安装方案优先一、终极方案:Mathpix截图转公式(强推!)效果:复杂矩阵→完美还原步骤:复制DeepSeek输出的LaTeX代码(例)\vec{F}=q(\vec{E}+\vec{v}\times\vec{B})打开Mathpix官网→按Ctrl+Alt+M截取公式右键粘贴到Word→自动变身标准公式!✅优势:识别准确率
- 【Servo】自整定、惯量识别、调谐
我不是程序猿儿
ServoCc++C++c语言
好的,这里为你用伺服驱动领域的语言详细解释“自整定”的概念:自整定(AutoTuning)的定义自整定是指伺服驱动器通过内置的检测、识别和计算算法,自动测量并设置控制系统参数(如增益、惯量、摩擦等),以实现对伺服系统性能的快速优化和匹配,无需人工手动逐一调节。通俗理解:就像智能家电的“一键设置”,自整定可以让初学者或非专业人员只需按一个按钮,系统会自动检测自身状态,选择或计算出合适的参数,使伺服系
- Python+dddocr自动化突破多缺口滑块验证技术详解
Python+dddocr自动化突破多缺口滑块验证技术详解在当今互联网环境中,滑块验证已成为阻挡自动化程序的主要防线之一。本文将通过Python+dddocr实现一套完整的自动化解决方案,突破多缺口滑块验证,内容涵盖技术原理、实现细节和实战技巧。一、多缺口滑块验证的技术原理多缺口滑块验证是传统滑块验证的升级版,通过设置多个干扰项增加识别难度:验证机制图像生成验证逻辑背景图缺口碎片缺口匹配行为分析添
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号