机器学习深度学习 笔试面试题目整理(3)

题目来源:

  1. 面试笔试整理3:深度学习机器学习面试问题准备(必会)
  2. 面试笔试整理4:机器学习面试问题准备(进阶)
  3. 深度学习面试题
  4. 深度学习岗位面试题

1. 决策树相关:

主要见机器学习 学习笔记(8) 决策树

  • KL散度用于度量两个分布的不相似性,KL(p||q)等于交叉熵H(p,q)-熵H(p)。交叉熵可以看成是用q编码P所需的bit数,减去p本身需要的bit数,KL散度相当于用q编码p需要的额外bits。
  • 交互信息Mutual information :I(x,y) = H(x)-H(x|y) = H(y)-H(y|x) 表示观察到x后,y的熵会减少多少。

2. 逻辑回归相关:

主要见:机器学习 学习笔记(6) Logistic 回归

(1)公式推导一定要会

(2)逻辑回归的基本概念 
  这个最好从广义线性模型的角度分析,逻辑回归是假设y服从Bernoulli分布。

(3)L1-norm和L2-norm 
  其实稀疏的根本还是在于L0-norm也就是直接统计参数不为0的个数作为规则项,但实际上却不好执行于是引入了L1-norm;而L1norm本质上是假设参数先验是服从Laplace分布的,而L2-norm是假设参数先验为Gaussian分布,我们在网上看到的通常用图像来解答这个问题的原理就在这。 
  但是L1-norm的求解比较困难,可以用坐标轴下降法或是最小角回归法求解。

(4)LR和SVM对比 
  首先,LR和SVM最大的区别在于损失函数的选择,LR的损失函数为Log损失(或者说是逻辑损失都可以)、而SVM的损失函数为hinge loss。 
 
  其次,两者都是线性模型。 
  最后,SVM只考虑支持向量(也就是和分类相关的少数点) 
   
(5)LR和随机森林区别 
  随机森林等树算法都是非线性的,而LR是线性的。LR更侧重全局优化,而树模型主要是局部的优化。 

(6)常用的优化方法 
  机器学习 学习笔记(4)牛顿法 拟牛顿法

       机器学习 学习笔记(3) 梯度下降

牛顿法其实就是通过切线与x轴的交点不断更新切线的位置,直到达到曲线与x轴的交点得到方程解。在实际应用中我们因为常常要求解凸优化问题,也就是要求解函数一阶导数为0的位置,而牛顿法恰好可以给这种问题提供解决方法。实际应用中牛顿法首先选择一个点作为起始点,并进行一次二阶泰勒展开得到导数为0的点进行一个更新,直到达到要求,这时牛顿法也就成了二阶求解问题,比一阶方法更快。我们常常看到的x通常为一个多维向量,这也就引出了Hessian矩阵的概念(就是x的二阶导数矩阵)。缺点:牛顿法是定长迭代,没有步长因子,所以不能保证函数值稳定的下降,严重时甚至会失败。还有就是牛顿法要求函数一定是二阶可导的。而且计算Hessian矩阵的逆复杂度很大。 

 

你可能感兴趣的:(机器学习,深度学习)