Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3.
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
这里可以使用双端队列,使得队列里的数呈递减趋势,即始终保持队头最大。
如果对头在当前窗口内,则它就是当前窗口的最大值。
如果队头不在当前窗口范围,则删除它。这里队列里存储的不是值,而是值的位置,因为如果存储值的话,无法判断值是否在当前窗口中。
class Solution {
public:
vector maxSlidingWindow(vector& nums, int k)
{
deque dq;
vector result;
int len = nums.size();
for (int i = 0 ; i < len ; i++)
{
//当前窗口是[i-k+1, i-k+2, ... i-1, i ](i>=k-1时),如果队头不在这个范围内,则丢弃
if (!dq.empty() && dq.front() < i-k+1)
dq.pop_front();
//把队列中小的删掉,保持队列递减
while (!dq.empty() && nums[dq.back()] < nums[i])
dq.pop_back();
dq.push_back(i);
//从k-1开始,每次的队头就是最大值
if (i >= k-1)
result.push_back(nums[dq.front()]);
}
return result;
}
};