opencv联合dlib人脸识别例子

本篇文章是在上一篇文章 opencv联合dlib人脸检测例子二(加快检测) 的基础上做了一个人脸识别功能。

本文章中的代码实现了人脸识别功能。检测目标图片中的人脸是不是库中的某张图片中的人脸,按照以下操作步骤实现效果:
1. 搜集一些目标人物的人脸图片,每张图片的名字为 名字 + 后缀(.jpg/.png. …)格式,存放到指定目录下,这里以faces作为指定目录
2. 搜集目标人物的其他的人脸图片,作为验证使用

arvik是在linux环境下编写的代码,如果需要运行到win环境下,需要重新用windows代码实现getFiles()函数。

源代码及其详细解释如下


#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 

#ifdef __cplusplus
extern "C"{
#endif

#include 
#include 
#include 
#include 

#ifdef __cplusplus
}
#endif

//由于dlib和opencv中有相当一部分类同名,故不能同时对它们使用using namespace,否则会出现一些莫名其妙的问题
//且dlib库和标准std库中的类发生冲突,如map,string 类等等
using namespace std;
using namespace cv;
//using namespace dlib;

void getFiles(std::string path, std::map<std::string, std::string> &files);
void line_one_face_detections(cv::Mat img, std::vector fs);

template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = dlib::add_prev11,dlib::tag1>>;

template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = dlib::add_prev22,2,2,2,dlib::skip12,dlib::tag1>>>>>;

template <int N, template <typename> class BN, int stride, typename SUBNET> 
using block  = BN3,3,1,1,dlib::relu3,3,stride,stride,SUBNET>>>>>;

template <int N, typename SUBNET> using ares      = dlib::relu>;
template <int N, typename SUBNET> using ares_down = dlib::relu>;

template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;

using anet_type = dlib::loss_metric128,dlib::avg_pool_everything<
                            alevel0<
                            alevel1<
                            alevel2<
                            alevel3<
                            alevel4<
                            dlib::max_pool<3,3,2,2,dlib::relu32,7,7,2,2,
                            dlib::input_rgb_image_sized<150>
                            >>>>>>>>>>>>;




/*
识别一张图片是不是库里的某个人
方法:
统计出库文件夹中所有人的图片的face_descriptors,然后计算出当前图片中的人脸face_descriptors,二者之间距离小于0.6则视为同一个人
./t9 faces pic1
*/

int main(int argc, char *argv[])
{
    time_t start_t, end_t;
    if(argc != 3)
    {
        std::cout<< "you should specified a dir!"<<std::endl;
        return 0;
    }
    time(&start_t);
    std::map<string, string> files;
    getFiles(argv[1], files);

    if(files.empty())
    {
        std::cout<< "No pic files found in "<< argv[1] <<std::endl;
        return 0;
    }

    //加载训练好的级联分类器,利用haar级联分类器快速找出人脸区域,然后交给dlib检测人脸部位
    cv::CascadeClassifier faceDetector("haarcascade_frontalface_alt2.xml");
    if(faceDetector.empty())
    {
        std::cout << "face detector is empty!" <<std::endl;
        return 0;
    }

    //加载人脸形状探测器
    dlib::shape_predictor sp;
    dlib::deserialize("./shape_predictor_68_face_landmarks.dat") >> sp;

    //加载负责人脸识别的DNN
    anet_type net;
    dlib::deserialize("dlib_face_recognition_resnet_model_v1.dat") >> net;

    //人脸描述符库, face_descriptor ---> name
    mapfloat,0,1>, string> fdlib;

    for(map<string, string>::iterator it = files.begin(); it != files.end(); it++  )
    {
        std::cout << "filename:" << it->second << " filepath:" <first<<std::endl;

        cv::Mat frame = cv::imread(it->first);
        cv::Mat src;
        cv::cvtColor(frame, src, CV_BGR2GRAY);
        dlib::array2d dimg;
        dlib::assign_image(dimg, dlib::cv_image(src)); 

        //haar级联分类器探测人脸区域,获取一系列人脸所在区域
        std::vector objects;
        std::vector dets;
        faceDetector.detectMultiScale(src, objects);
        for (int i = 0; i < objects.size(); i++)
        {
            //cv::rectangle(frame, objects[i], CV_RGB(200,0,0));
            dlib::rectangle r(objects[i].x, objects[i].y, objects[i].x + objects[i].width, objects[i].y + objects[i].height);
            dets.push_back(r);  //正常情况下应该只检测到一副面容
        }

        if (dets.size() == 0)
            continue;

        std::vector> faces;
        std::vector shapes;
        for(int i = 0; i < dets.size(); i++)
        {
            dlib::full_object_detection shape = sp(dimg, dets[i]); //获取指定一个区域的人脸形状
            shapes.push_back(shape); 

            dlib::matrix face_chip;
            dlib::extract_image_chip(dimg, dlib::get_face_chip_details(shape,150,0.25), face_chip);

            faces.push_back(move(face_chip));
        }

        if (faces.size() == 0)
        {
            cout << "No faces found in " << it->second<continue;
        }

        std::vectorfloat,0,1>> face_descriptors = net(faces);

        for(std::vectorfloat,0,1>>::iterator iter = face_descriptors.begin(); iter != face_descriptors.end(); iter++ )
        {
            fdlib.insert(pairfloat,0,1>, string>(*iter, it->second));
        }

    }

    time(&end_t);
    std::cout << "ok, all pic in lib had been keep on. use time:"<< end_t - start_t << " s" <<std::endl;


    time(&start_t);
    //加载待检测的图片
    cv::Mat frame = cv::imread(argv[2]);
    cv::Mat src;
    cv::cvtColor(frame, src, CV_BGR2GRAY);
    dlib::array2d dimg;
    dlib::assign_image(dimg, dlib::cv_image(src));

    //haar级联分类器探测人脸区域,获取一系列人脸所在区域
    std::vector objects;
    std::vector dets;
    faceDetector.detectMultiScale(src, objects);
    for (int i = 0; i < objects.size(); i++)
    {
        cv::rectangle(frame, objects[i], CV_RGB(200,0,0));
        dlib::rectangle r(objects[i].x, objects[i].y, objects[i].x + objects[i].width, objects[i].y + objects[i].height);
        dets.push_back(r);  //正常情况下应该只检测到一副面容
    }

    if (dets.size() == 0)
    {
        cout << "there is no faces found in " << argv[2] <return -1;
    }

    std::vector> faces;
    std::vector shapes;
    for(int i = 0; i < dets.size(); i++)
    {
        dlib::full_object_detection shape = sp(dimg, dets[i]); //获取指定一个区域的人脸形状
        shapes.push_back(shape); 

        dlib::matrix face_chip;
        dlib::extract_image_chip(dimg, dlib::get_face_chip_details(shape,150,0.25), face_chip);

        faces.push_back(move(face_chip));
    }
    if (faces.size() == 0)
    {
        cout << "No faces found in " << argv[2] <return -1;
    }
    line_one_face_detections(frame, shapes);

    std::vectorfloat,0,1>> face_descriptors = net(faces);

    //遍历库,查找相似图像
    for(mapfloat,0,1>, string>::iterator it=fdlib.begin(); it != fdlib.end(); it++ )
    {
        float distance = length(it->first - face_descriptors[0]);
        if( distance < 0.6 )
        {
            cout << "the pic is " << it->second << "!, distance:" << distance << endl;

            cv::Point org(objects[0].x, objects[0].y);
            cv::putText(frame, it->second, org, cv::FONT_HERSHEY_SIMPLEX, 1.0, CV_RGB(0, 200, 0));
            break;
        }
    }

    time(&end_t);
    std::cout << "Face recognition is done! Use time:"<< end_t - start_t << " s" <<std::endl;
    cv::imshow("frame", frame);
    cv::waitKey(0);
    return 0;
}



void getFiles(string path, map<string, string> &files)
{
    DIR *dir;
    struct dirent *ptr;
    char base[1000];

    if(path[path.length()-1] != '/')
        path = path + "/";

    if((dir = opendir(path.c_str())) == NULL)
    {
        cout<<"open the dir: "<< path <<"error!" <return;
    }

    while((ptr=readdir(dir)) !=NULL )
    {
        ///current dir OR parrent dir 
        if(strcmp(ptr->d_name,".")==0 || strcmp(ptr->d_name,"..")==0) 
            continue; 
        else if(ptr->d_type == 8) //file
        {
            string fn(ptr->d_name);
            string name;
            name = fn.substr(0, fn.find_last_of("."));

            string p = path + string(ptr->d_name);
            files.insert(pair<string, string>(p, name));
        }
        else if(ptr->d_type == 10)    ///link file
        {}
        else if(ptr->d_type == 4)    ///dir
        {}
    }

    closedir(dir);
    return ;
}


void line_one_face_detections(cv::Mat img, std::vector fs)
{
    int i, j;

    for(j=0; jfor(i = 0; i<67; i++)
        {
            // 下巴到脸颊 0 ~ 16
            //左边眉毛 17 ~ 21
            //右边眉毛 21 ~ 26
            //鼻梁     27 ~ 30
            //鼻孔        31 ~ 35
            //左眼        36 ~ 41
            //右眼        42 ~ 47
            //嘴唇外圈  48 ~ 59
            //嘴唇内圈  59 ~ 67
            switch(i)
            {
                case 16:
                case 21:
                case 26:
                case 30:
                case 35:
                case 41:
                case 47:
                case 59:
                    i++;
                    break;
                default:
                    break;
            }

            p1.x = fs[j].part(i).x();
            p1.y = fs[j].part(i).y();
            p2.x = fs[j].part(i+1).x();
            p2.y = fs[j].part(i+1).y();
            cv::line(img, p1, p2, cv::Scalar(0,0,255), 1);
        }

    }
}

测试用faces目录下的样本图片
opencv联合dlib人脸识别例子_第1张图片

测试用照片
opencv联合dlib人脸识别例子_第2张图片

运行效果
opencv联合dlib人脸识别例子_第3张图片opencv联合dlib人脸识别例子_第4张图片


附录,工程代码

opencv联合dlib人脸识别例子_第5张图片

linux安装好opencv和dlib后,解压工程代码到linux环境下,进入目录执行make,分别执行./t9 faces face_tao1.jpg./t9 faces face_tao2.jpg即可进行人脸识别

点击 这里 下载本文章工程源代码。点击无效请访问 https://download.csdn.net/download/u012819339/10664602

你可能感兴趣的:(opencv)