【揭秘】为什么switch...case比if...else执行效率高

关注、星标公众号,直达精彩内容

作者:李肖遥

来源:技术让梦想更伟大

在C语言中,条件判断语句是程序的重要组成部分,也是系统业务逻辑的控制手段,教科书告诉我们switch...case...语句比if...else if...else执行效率要高,但这到底是为什么呢?本文尝试从汇编的角度予以分析并揭晓其中的奥秘。

switch...case与if...else的根本区别

switch...case会生成一个跳转表来指示实际的case分支的地址,而这个跳转表的索引号与switch变量的值是相等的。从而,switch...case不用像if...else那样遍历条件分支直到命中条件,而只需访问对应索引号的表项从而到达定位分支的目的。

具体地说,switch...case会生成一份大小(表项数)为最大case常量+1的跳表,程序首先判断switch变量是否大于最大case 常量,若大于,则跳到default分支处理;否则取得索引号为switch变量大小的跳表项的地址(即跳表的起始地址+表项大小*索引号),程序接着跳到此地址执行,到此完成了分支的跳转。

第一步,写一个demo程序:foo.c

#include 

static int
foo_ifelse(char c)
{
        if (c == '0' || c == '1') {
                c += 1;
        } else if (c == 'a' || c == 'b') {
                c += 2;
        } else if (c == 'A' || c == 'B') {
                c += 3;
        } else {
                c += 4;
        }

        return (c);
}

static int
foo_switch(char c)
{
        switch (c) {
                case '1':
                case '0': c += 1; break;
                case 'b':
                case 'a': c += 2; break;
                case 'B':
                case 'A': c += 3; break;
                default:  c += 4; break;
        }

        return (c);
}

int
main(int argc, char **argv)
{
        int m1 = foo_ifelse('0');
        int m2 = foo_ifelse('1');
        int n1 = foo_switch('a');
        int n2 = foo_switch('b');
        (void) printf("%c %c %c %c\n", m1, m2, n1, n2);
        return (0);
}

第二步,在Ubuntu上使用gcc编译

$ gcc -g -o foo foo.c

第三步,使用gdb对二进制文件foo反汇编 (使用intel语法)

o 反汇编foo_ifelse()
(gdb) set disassembly-flavor intel
(gdb) disas /m foo_ifelse
Dump of assembler code for function foo_ifelse:
4       {
   0x0804841d <+0>:     push   ebp
   0x0804841e <+1>:     mov    ebp,esp
   0x08048420 <+3>:     sub    esp,0x4
   0x08048423 <+6>:     mov    eax,DWORD PTR [ebp+0x8]
   0x08048426 <+9>:     mov    BYTE PTR [ebp-0x4],al

5               if (c == '0' || c == '1') {
   0x08048429 <+12>:    cmp    BYTE PTR [ebp-0x4],0x30
   0x0804842d <+16>:    je     0x8048435 
   0x0804842f <+18>:    cmp    BYTE PTR [ebp-0x4],0x31
   0x08048433 <+22>:    jne    0x8048441 

6                       c += 1;
   0x08048435 <+24>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x08048439 <+28>:    add    eax,0x1
   0x0804843c <+31>:    mov    BYTE PTR [ebp-0x4],al
   0x0804843f <+34>:    jmp    0x804847b 

7               } else if (c == 'a' || c == 'b') {
   0x08048441 <+36>:    cmp    BYTE PTR [ebp-0x4],0x61
   0x08048445 <+40>:    je     0x804844d 
   0x08048447 <+42>:    cmp    BYTE PTR [ebp-0x4],0x62
   0x0804844b <+46>:    jne    0x8048459 

8                       c += 2;
   0x0804844d <+48>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x08048451 <+52>:    add    eax,0x2
   0x08048454 <+55>:    mov    BYTE PTR [ebp-0x4],al
   0x08048457 <+58>:    jmp    0x804847b 

9               } else if (c == 'A' || c == 'B') {
   0x08048459 <+60>:    cmp    BYTE PTR [ebp-0x4],0x41
   0x0804845d <+64>:    je     0x8048465 
   0x0804845f <+66>:    cmp    BYTE PTR [ebp-0x4],0x42
   0x08048463 <+70>:    jne    0x8048471 

10                      c += 3;
   0x08048465 <+72>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x08048469 <+76>:    add    eax,0x3
   0x0804846c <+79>:    mov    BYTE PTR [ebp-0x4],al
   0x0804846f <+82>:    jmp    0x804847b 

11              } else {
12                      c += 4;
   0x08048471 <+84>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x08048475 <+88>:    add    eax,0x4
   0x08048478 <+91>:    mov    BYTE PTR [ebp-0x4],al

13              }
14
15              return (c);
   0x0804847b <+94>:    movsx  eax,BYTE PTR [ebp-0x4]

16      }
   0x0804847f <+98>:    leave
   0x08048480 <+99>:    ret

End of assembler dump.
(gdb)o 反汇编foo_ifelse()
(gdb) set disassembly-flavor intel
(gdb) disas /m foo_ifelse
Dump of assembler code for function foo_ifelse:
4       {
   0x0804841d <+0>:     push   ebp
   0x0804841e <+1>:     mov    ebp,esp
   0x08048420 <+3>:     sub    esp,0x4
   0x08048423 <+6>:     mov    eax,DWORD PTR [ebp+0x8]
   0x08048426 <+9>:     mov    BYTE PTR [ebp-0x4],al

5               if (c == '0' || c == '1') {
   0x08048429 <+12>:    cmp    BYTE PTR [ebp-0x4],0x30
   0x0804842d <+16>:    je     0x8048435 
   0x0804842f <+18>:    cmp    BYTE PTR [ebp-0x4],0x31
   0x08048433 <+22>:    jne    0x8048441 

6                       c += 1;
   0x08048435 <+24>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x08048439 <+28>:    add    eax,0x1
   0x0804843c <+31>:    mov    BYTE PTR [ebp-0x4],al
   0x0804843f <+34>:    jmp    0x804847b 

7               } else if (c == 'a' || c == 'b') {
   0x08048441 <+36>:    cmp    BYTE PTR [ebp-0x4],0x61
   0x08048445 <+40>:    je     0x804844d 
   0x08048447 <+42>:    cmp    BYTE PTR [ebp-0x4],0x62
   0x0804844b <+46>:    jne    0x8048459 

8                       c += 2;
   0x0804844d <+48>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x08048451 <+52>:    add    eax,0x2
   0x08048454 <+55>:    mov    BYTE PTR [ebp-0x4],al
   0x08048457 <+58>:    jmp    0x804847b 

9               } else if (c == 'A' || c == 'B') {
   0x08048459 <+60>:    cmp    BYTE PTR [ebp-0x4],0x41
   0x0804845d <+64>:    je     0x8048465 
   0x0804845f <+66>:    cmp    BYTE PTR [ebp-0x4],0x42
   0x08048463 <+70>:    jne    0x8048471 

10                      c += 3;
   0x08048465 <+72>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x08048469 <+76>:    add    eax,0x3
   0x0804846c <+79>:    mov    BYTE PTR [ebp-0x4],al
   0x0804846f <+82>:    jmp    0x804847b 

11              } else {
12                      c += 4;
   0x08048471 <+84>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x08048475 <+88>:    add    eax,0x4
   0x08048478 <+91>:    mov    BYTE PTR [ebp-0x4],al

13              }
14
15              return (c);
   0x0804847b <+94>:    movsx  eax,BYTE PTR [ebp-0x4]

16      }
   0x0804847f <+98>:    leave
   0x08048480 <+99>:    ret

End of assembler dump.
(gdb)

o 反汇编foo_switch()

(gdb) set disassembly-flavor intel
(gdb) disas /m foo_switch
Dump of assembler code for function foo_switch:
20      {
   0x08048481 <+0>:     push   ebp
   0x08048482 <+1>:     mov    ebp,esp
   0x08048484 <+3>:     sub    esp,0x4
   0x08048487 <+6>:     mov    eax,DWORD PTR [ebp+0x8]
   0x0804848a <+9>:     mov    BYTE PTR [ebp-0x4],al

21              switch (c) {
   0x0804848d <+12>:    movsx  eax,BYTE PTR [ebp-0x4]
   0x08048491 <+16>:    sub    eax,0x30
   0x08048494 <+19>:    cmp    eax,0x32
   0x08048497 <+22>:    ja     0x80484c6 
   0x08048499 <+24>:    mov    eax,DWORD PTR [eax*4+0x80485f0]
   0x080484a0 <+31>:    jmp    eax

22                      case '1':
23                      case '0': c += 1; break;
   0x080484a2 <+33>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x080484a6 <+37>:    add    eax,0x1
   0x080484a9 <+40>:    mov    BYTE PTR [ebp-0x4],al
   0x080484ac <+43>:    jmp    0x80484d1 

24                      case 'b':
25                      case 'a': c += 2; break;
   0x080484ae <+45>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x080484b2 <+49>:    add    eax,0x2
   0x080484b5 <+52>:    mov    BYTE PTR [ebp-0x4],al
   0x080484b8 <+55>:    jmp    0x80484d1 

26                      case 'B':
27                      case 'A': c += 3; break;
   0x080484ba <+57>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x080484be <+61>:    add    eax,0x3
   0x080484c1 <+64>:    mov    BYTE PTR [ebp-0x4],al
   0x080484c4 <+67>:    jmp    0x80484d1 

28                      default:  c += 4; break;
   0x080484c6 <+69>:    movzx  eax,BYTE PTR [ebp-0x4]
   0x080484ca <+73>:    add    eax,0x4
   0x080484cd <+76>:    mov    BYTE PTR [ebp-0x4],al
   0x080484d0 <+79>:    nop

29              }
30
31              return (c);
   0x080484d1 <+80>:    movsx  eax,BYTE PTR [ebp-0x4]

32      }
   0x080484d5 <+84>:    leave
   0x080484d6 <+85>:    ret

End of assembler dump.
(gdb)

分析:

  1. 在foo_ifelse()中,采用的方法是按顺序比较,如满足条件,则执行对应的代码,否则跳转到下一个分支再进行比较;

  2. 在foo_switch()中,下面的这段汇编代码比较有意思,

..
21 switch (c) {
   0x0804848d <+12>:    movsx  eax,BYTE PTR [ebp-0x4]
   0x08048491 <+16>:    sub    eax,0x30
   0x08048494 <+19>:    cmp    eax,0x32
   0x08048497 <+22>:    ja     0x80484c6 
   0x08048499 <+24>:    mov    eax,DWORD PTR [eax*4+0x80485f0]
   0x080484a0 <+31>:    jmp    eax
..

注意: 

第17行 jmp eax

也就是说,当c的取值不同,是什么机制保证第17行能跳转到正确的位置开始执行呢?

第16行: eax = [eax * 4 + 0x80485f0]

搞清楚了从地址0x80485f0开始,对应的内存里面的内容也就回答了刚才的问题。

执行完第16行后,

  • 当c为'1'或'0'时, eax的值应该是0x080484a2;

  • 当c为'b'或'a'时, eax的值应该是0x080484ae;

  • 当c为'B'或'A'时, eax的值应该是0x080484ba;

通过gdb查看对应的内存,确实如此!

>>> ord('1') - 0x30
>>> ord('0') - 0x30
(gdb) x /2wx  0*4+0x80485f0
0x80485f0:    0x080484a2    0x080484a2

>>> ord('b') - 0x30
>>> ord('a') - 0x30
(gdb) x /2wx 49*4+0x80485f0
0x80486b4:    0x080484ae    0x080484ae
                
>>> ord('B') - 0x30
>>> ord('A') - 0x30
(gdb) x /2wx 17*4+0x80485f0
0x8048634:    0x080484ba    0x080484ba

那么,我们可以大胆的猜测,虽然c的取值不同但是跳转的IP确实是精准无误的,一定是编译阶段就被设定好了,果真如此吗?接下来分析一下对应的二进制文件foo,

第四步,使用objdump查看foo,

$ objdump -D foo > /tmp/x
 
$ vim /tmp/x
 509 Disassembly of p .rodata:
 ...
 518  80485f0:       a2 84 04 08 a2          mov    %al,0xa2080484
 519  80485f5:       84 04 08                test   %al,(%eax,%ecx,1)
 ...
 534  8048630:       c6 84 04 08 ba 84 04    movb   $0x8,0x484ba08(%esp,%eax,1)
 535  8048637:       08
 536  8048638:       ba 84 04 08 c6          mov    $0xc6080484,%edx
 ...
 566  80486b0:       c6 84 04 08 ae 84 04    movb   $0x8,0x484ae08(%esp,%eax,1)
 567  80486b7:       08
 568  80486b8:       ae                      scas   %es:(%edi),%al
 569  80486b9:       84 04 08                test   %al,(%eax,%ecx,1)
 ...

在0x80485f0地址,存的8个字节正好是0x080484a2, 0x080484a2 (注意:按照小端的方式阅读)

在0x80486b4地址,存的8个字节正好是0x080484ae, 0x080484ae

在0x8048634地址,存的8个字节正好是0x080484ba,0x080484ba

果然不出所料,要跳转的IP的值正是在编译的时候存入了.rodata(只读数据区)。一旦foo开始运行,对应的内存地址就填写上了正确的待跳转地址,接下来只不过是根据c的取值计算出对应的IP存放的内存起始地址X,从X中取出待跳转的地址,直接跳转就好。

16    0x08048499 <+24>:    mov    eax,DWORD PTR [eax*4+0x80485f0]
17    0x080484a0 <+31>:    jmp    eax

到此为止,我们已经搞清楚了为什么switch...case...语句相对于if...else if...else...来说执行效率要高的根本原因。简言之,编译的时候创建了一个map存于.rodata区中,运行的时候直接根据输入(c的值)查表,找到对应的IP后直接跳转。(省去了cmp, jmp -> cmp, jmp -> cmp, jmp...这一冗长的计算过程。)

总结:

switch...case...执行效率高,属于典型的以空间换时间。也就是说,(套用算法的行话)以提高空间复杂度为代价降低了时间复杂度。

题外话

大家去看看一本书《C++ Footprint and Performance Optimization》,里面的7章,第一节。然后根据大量的实际程序测试(不考虑不同的编译器优化程度差异,假设都是最好的优化),那么Switch语句击中第三个选项的时间跟if/else if语句击中第三个选项的时间相同。击中第一,第二选项的速度if语句快,击中第四以及第四之后的选项的速度switch语句快。所以,如果所有选项出现概率相同的话,结论就是:5个选项(包括default)的情况下,switch和if/else if相同。低于5个选项if快,高于5给选项switch快!


推荐阅读:给所有入门编程者的几点建议!
【编程之美】模块化编程到底有多重要

关注微信公众号『技术让梦想更伟大』,后台回复“m”查看更多内容,回复“加群”加入技术交流群。
长按前往图中包含的公众号关注

你可能感兴趣的:(【揭秘】为什么switch...case比if...else执行效率高)