python 大数据基础编程

1. 随机数组

 from numpy import *
 random.rand(4,4)

输出
array([[ 0.81273873,  0.93985098,  0.72256469,  0.83294612],
       [ 0.06087078,  0.85160009,  0.88331584,  0.8634025 ],
       [ 0.328648  ,  0.74410427,  0.07213059,  0.51864295],
       [ 0.73424426,  0.75289487,  0.56867247,  0.61839992]])

2. 矩阵

矩阵和逆矩阵
randMat=mat(random.rand(4,4))
randMat.I
matrix([[ 0.33672204,  0.94254807, -1.46432126,  0.23631155],
        [ 1.47878348, -1.01914042,  0.23114864, -0.05431002],
        [-0.06186018,  0.38974979,  0.89236284, -0.45058119],
        [-1.60231928, -0.44524619,  1.58433726,  1.1328065 ]])

3. 查找帮助信息

from numpy import *
help(zeros)
Help on built-in function zeros in module numpy.core.multiarray:

zeros(...)
    zeros(shape, dtype=float, order='C')

    Return a new array of given shape and type, filled with zeros.

    Parameters
    ----------
    shape : int or sequence of ints
        Shape of the new array, e.g., ``(2, 3)`` or ``2``.
    dtype : data-type, optional
        The desired data-type for the array, e.g., `numpy.int8`.  Default is
        `numpy.float64`.
    order : {'C', 'F'}, optional
        Whether to store multidimensional data in C- or Fortran-contiguous
        (row- or column-wise) order in memory.

4. 计算矩阵行数和列数

 from numpy import *
 import operator
 a =mat([[1,2,3],[5,6,9]])
 a
matrix([[1, 2, 3],
    [5, 6, 9]])
 shape(a)
(2, 3)
 a.shape[0] #计算行数
2
 a.shape[1] #计算列数
3

你可能感兴趣的:(python 大数据基础编程)