【LeetCode】二分查找详细总结(清楚易懂)

第一类: 需查找和目标值完全相等的数

        这是最简单的一类,也是我们最开始学二分查找法需要解决的问题,比如我们有数组 [2, 4, 5, 6, 9],target = 6,那么我们可以写出二分查找法的代码如下:

int find(vector& nums, int target) {
    int left = 0, right = nums.size();
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) return mid;
        else if (nums[mid] < target) left = mid + 1;
        else right = mid;
    }
    return -1;
}

        会返回3,也就是 target 的在数组中的位置。注意二分查找法的写法并不唯一,主要可以变动地方有四处:

  • 第一处是 right 的初始化,可以写成 nums.size() 或者 nums.size() - 1。
  • 第二处是 left 和 right 的关系,可以写成 left < right 或者 left <= right。
  • 第三处是更新 right 的赋值,可以写成 right = mid 或者 right = mid - 1。
  • 第四处是最后返回值,可以返回 left,right,或 right - 1。

        但是这些不同的写法并不能随机的组合,像上面的那种写法,若 right 初始化为了 nums.size(),那么就必须用 left < right,而最后的 right 的赋值必须用 right = mid。但是如果我们 right 初始化为 nums.size() - 1,那么就必须用 left <= right,并且right的赋值要写成 right = mid - 1,不然就会出错。所以博主的建议是选择一套自己喜欢的写法,并且记住,实在不行就带简单的例子来一步一步执行,确定正确的写法也行。

第二类: 查找第一个不小于目标值的数,可变形为查找最后一个小于目标值的数

        这是比较常见的一类,因为我们要查找的目标值不一定会在数组中出现,也有可能是跟目标值相等的数在数组中并不唯一,而是有多个,那么这种情况下 nums[mid] == target 这条判断语句就没有必要存在。比如在数组 [2, 4, 5, 6, 9] 中查找数字3,就会返回数字4的位置;在数组 [0, 1, 1, 1, 1] 中查找数字1,就会返回第一个数字1的位置。我们可以使用如下代码:

int find(vector& nums, int target) {
    int left = 0, right = nums.size();
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) left = mid + 1;
        else right = mid;
    }
    return right;
}

        最后我们需要返回的位置就是 right 指针指向的地方。在 C++ 的 STL 中有专门的查找第一个不小于目标值的数的函数 lower_bound,在博主的解法中也会时不时的用到这个函数。但是如果面试的时候人家不让使用内置函数,那么我们只能老老实实写上面这段二分查找的函数。

        这一类可以轻松的变形为查找最后一个小于目标值的数,怎么变呢。我们已经找到了第一个不小于目标值的数,那么再往前退一位,返回 right - 1,就是最后一个小于目标值的数。

第三类: 查找第一个大于目标值的数,可变形为查找最后一个不大于目标值的数

        这一类也比较常见,尤其是查找第一个大于目标值的数,在 C++ 的 STL 也有专门的函数 upper_bound,这里跟上面的那种情况的写法上很相似,只需要添加一个等号,将之前的 nums[mid] < target 变成 nums[mid] <= target,就这一个小小的变化,其实直接就改变了搜索的方向,使得在数组中有很多跟目标值相同的数字存在的情况下,返回最后一个相同的数字的下一个位置。比如在数组 [2, 4, 5, 6, 9] 中查找数字3,还是返回数字4的位置,这跟上面那查找方式返回的结果相同,因为数字4在此数组中既是第一个不小于目标值3的数,也是第一个大于目标值3的数,所以 make sense;在数组 [0, 1, 1, 1, 1] 中查找数字1,就会返回坐标5,通过对比返回的坐标和数组的长度,我们就知道是否存在这样一个大于目标值的数。参见下面的代码:
 

int find(vector& nums, int target) {
    int left = 0, right = nums.size();
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] <= target) left = mid + 1;
        else right = mid;
    }
    return right;
}

        这一类可以轻松的变形为查找最后一个不大于目标值的数,怎么变呢。我们已经找到了第一个大于目标值的数,那么再往前退一位,返回 right - 1,就是最后一个不大于目标值的数。比如在数组 [0, 1, 1, 1, 1] 中查找数字1,就会返回最后一个数字1的位置4,这在有些情况下是需要这么做的。

你可能感兴趣的:(数据结构与算法)