基于距离的分水岭分割流程:
/*
读取图像,将原图上进行pyrMeanShiftFiltering()处理,保留更多的边缘信息,
在平滑区进行滤波,保证后面二值化时的效果更好,
转成单通道,二值处理,进行距离变换,将距离变换的结果归一化,找到山峰
再一次进行二值化处理,转到CV_8U类型的图像
进行轮廓发现,绘制轮廓,每次绘制轮廓时用不同的值对每个轮廓进行标记
关键:画一个圆作为标记这个不理解
对原图形态学腐蚀,去除干扰
使用watershed函数,得到maskers
根据masker中的像素值,索引颜色填充
*/
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src = imread("coins_001.jpg");
if (src.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
Mat gray, binary, shifted;
// 将灰度值相近的元素进行聚类,将颜色数据差距不大的像素点合成一个颜色,方便后续处理
// 去边缘保留滤波,参数:输入图像,输出图像,空间窗的半径,色彩窗的半径
pyrMeanShiftFiltering(src, shifted, 21, 51);
imshow("shifted", shifted);
//滤波后的二值化
cvtColor(shifted, gray, COLOR_BGR2GRAY);
threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
imshow("binary", binary);
// distance transform
Mat dist;
distanceTransform(binary, dist, DistanceTypes::DIST_L2, 3, CV_32F);
normalize(dist, dist, 0, 1, NORM_MINMAX);
imshow("distance result", dist);
// binary
threshold(dist, dist, 0.4, 1, THRESH_BINARY);
imshow("distance binary", dist);
// markers
Mat dist_m;
dist.convertTo(dist_m, CV_8UC1); //执行后,dist_m的像素值十分的小,扩大了1000倍,才看出来了轮廓
imshow("dist", dist); //差点误以为dist_m是一张黑图
//finContours只支持CV_8UC1的格式,所以要进行通道转换
vector> contours;
findContours(dist_m, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));
imshow("dist_m", dist_m);
// create markers
Mat markers = Mat::zeros(src.size(), CV_32SC1);// 如果使用 CV_8UC1 ,watershed 函数会报错
//因为masker最后的边缘存储是-1,所以必须使用有符号的
for (size_t t = 0; t < contours.size(); t++) {
drawContours(markers, contours, static_cast(t), Scalar::all(static_cast(t) + 1), -1);//轮廓数字编号
}
circle(markers, Point(5, 5), 30, Scalar(255), -1); //关键代码!!!!!!!!!!!!!!!!!!!!!!!!!!!!1
// 创建marker,标记的位置如果在要分割的图像块上会影响分割的结果,如果不创建,分水岭变换会无效
imshow("markers", markers * 10000);
// 形态学操作 - 彩色图像,目的是去掉干扰,让结果更好
Mat k = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
morphologyEx(src, src, MORPH_ERODE, k);// 腐蚀,去粘连部位的干扰
// 完成分水岭变换
watershed(src, markers);
Mat mark = Mat::zeros(markers.size(), CV_8UC1);
markers.convertTo(mark, CV_8UC1);
bitwise_not(mark, mark, Mat());
//imshow("watershed result", mark);
// generate random color
vector colors;
for (size_t i = 0; i < contours.size(); i++) {
int r = theRNG().uniform(0, 255);
int g = theRNG().uniform(0, 255);
int b = theRNG().uniform(0, 255);
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
}
// 颜色填充与最终显示
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
int index = 0;
for (int row = 0; row < markers.rows; row++) {
for (int col = 0; col < markers.cols; col++) {
index = markers.at(row, col);
if (index > 0 && index <= contours.size()) {
dst.at(row, col) = colors[index - 1];
}
else {
dst.at(row, col) = Vec3b(0, 0, 0);
}
}
}
imshow("Final Result", dst);
printf("number of objects : %d\n", contours.size());
waitKey(0);
return 0;
}
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
void createDisplaySegments(Mat &segments, int numSegments, Mat& image);
Mat watershedCluster(Mat& srcImg, int& numSegments);
int main(int argc, char** argv) {
Mat srcImg = imread("cvtest.png");
if (srcImg.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", srcImg);
int numSegments;
Mat markers = watershedCluster(srcImg, numSegments);
//createDisplaySegments(markers, numSegments, srcImg);
waitKey(0);
return 0;
}
Mat watershedCluster(Mat& srcImg, int& numComp)
{
//二值化
Mat src_gray, src_thresh;
cvtColor(srcImg, src_gray, CV_BGR2GRAY);
threshold(src_gray, src_thresh, 0, 255, THRESH_BINARY | THRESH_OTSU);
imshow("binary", src_thresh);
//距离变换
Mat dist;
distanceTransform(src_thresh, dist, DistanceTypes::DIST_L2, 3, CV_32F);
normalize(dist, dist, 0, 1, NORM_MINMAX);
//开始生成标记
threshold(dist, dist, 0.1, 1.0, THRESH_BINARY);
normalize(dist, dist, 0, 255, NORM_MINMAX);
dist.convertTo(dist, CV_8UC1);
//标记开始
vector> contours;
vector hierarchy;
findContours(dist, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
if (contours.size() == 0)
{
return Mat();
}
Mat markers(dist.size(), CV_32S);
markers = Scalar::all(0);
for (int i = 0; i < contours.size(); i++) {
drawContours(markers, contours, i, Scalar(i + 1), -1, 8, hierarchy, INT_MAX);
}
circle(markers, Point(5, 5), 3, Scalar(255), -1);
// 分水岭变换
watershed(srcImg, markers);
numComp = contours.size();
return markers;
}
void createDisplaySegments(Mat &markers, int numSegments, Mat &image) {
// generate random color
vector colors;
for (size_t i = 0; i < numSegments; i++) {
int r = theRNG().uniform(0, 255);
int g = theRNG().uniform(0, 255);
int b = theRNG().uniform(0, 255);
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
}
// 颜色填充与最终显示
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
int index = 0;
for (int row = 0; row < markers.rows; row++) {
for (int col = 0; col < markers.cols; col++) {
index = markers.at(row, col);
if (index > 0 && index <= numSegments) {
dst.at(row, col) = colors[index - 1];
}
else {
dst.at(row, col) = Vec3b(255, 255, 255);
}
}
}
imshow("分水岭图像分割-演示", dst);
return;
}
终于可以敲代码,今天兼职值班的时候,手就一直痒痒,但又不能像之前一样,带上电脑过去(哭。。)还有几天就开学了,开学后,我要每天都敲代码6个小时以上,利用好Image Watch这个炒鸡赞的工具,继续学习新知识,加油!哈哈哈不水了。。。
第一个的效果还可以,但是第二个的效果不是很好,因为这个在makers的时候就已经出现问题了,程序中使用的算法不能够很好的得到分离,仅仅使用距离变换,但这是不够的,距离变换我的理解是为了要分开粘连区域而使用的,因为这样能更好的得到分割。所以对于这种类型的图像而言用处不大,暂时还没看到一种更好的算法能够实现,不过前面章节中的KMeans跟GMM可以用于这个。如果考虑用人机处理的方式应该可以得到,因为这样可以根据用户的需求进行分割,等下去试试看。