上一篇文章稍微入门了一下Tensorflow Federated框架,但是目前来说,要实现联邦学习(实验)算法用它还是“杀鸡用牛刀”。因此,在一番探索后,我发现朴素Tensorflow也能实现联邦学习算法,甚至还可以手动分开Client端和Server端代码,逻辑更清晰。稍作修改,添加网络传输后甚至可以部署到分布式场景,实现真正意义上的联邦学习(性能估计不会太好hhh)。
这篇文章中,我将分享一种实现联邦学习的方法,它具有以下优点:
继续阅读之前,默认大家对联邦学习有一些了解,并达成以下共识:
文章的代码环境、库依赖:
接下来本文会分成Client端、Server端代码设计与实现进行讲解。懒得看讲解的胖友可以直接拉到最后的完整代码章节,共有四个代码文件,运行python Server.py
即可以立马体验原汁原味的(单机模拟)联邦学习。
明确一下Client端的任务,包含下面三个步骤:
在这些任务下,我们可以设计出Client代码需要具备的一些功能:
其实,仔细一想也就比平时写的tf模型代码多了个加载、提取模型变量。假设Client类已经构建好了模型,那么sess.run()
一下每个变量,即可得到模型变量的值了。下面的代码展示了部分Clients类的定义,get_client_vars
函数将返回计算图中所有可训练的变量值:
class Clients:
def __init__(self, input_shape, num_classes, learning_rate, clients_num):
self.graph = tf.Graph()
self.sess = tf.Session(graph=self.graph)
""" 本函数未完待续... """
def get_client_vars(self):
""" Return all of the variables list """
with self.graph.as_default():
client_vars = self.sess.run(tf.trainable_variables())
return client_vars
加载Server端发过来的global_vars
到模型变量上,核心在于tf.Variable.load()
函数,把一个Tensor
的值加载到模型变量中,例如:
variable.load(tensor, sess)
将tensor
(类型为tf.Tensor
)的值赋值给variable
(类型为tf.Varibale
),sess
是tf.Session
。
如果要把整个模型中的变量值都加载,可以用tf.trainable_variables()
获取计算图中的所有可训练变量(一个list
),保证它和global_vars
的顺序对应后,可以这样实现:
def set_global_vars(self, global_vars):
""" Assign all of the variables with global vars """
with self.graph.as_default():
all_vars = tf.trainable_variables()
for variable, value in zip(all_vars, global_vars):
variable.load(value, self.sess)
此外,Clients类还需要进行模型定义和训练。我相信这不是实现联邦的重点,因此在下面的代码中,我将函数体去掉只留下接口定义(完整代码在最后一个章节):
import tensorflow as tf
import numpy as np
from collections import namedtuple
import math
# 自定义的模型定义函数
from Model import AlexNet
# 自定义的数据集类
from Dataset import Dataset
# The definition of fed model
# 用namedtuple来储存一个模型,依次为:
# X: 输入
# Y: 输出
# DROP_RATE: 顾名思义
# train_op: tf计算图中的训练节点(一般是optimizer.minimize(xxx))
# loss_op: 顾名思义
# loss_op: 顾名思义
FedModel = namedtuple('FedModel', 'X Y DROP_RATE train_op loss_op acc_op')
class Clients:
def __init__(self, input_shape, num_classes, learning_rate, clients_num):
self.graph = tf.Graph()
self.sess = tf.Session(graph=self.graph)
# Call the create function to build the computational graph of AlexNet
# `net` 是一个list,依次包含模型中FedModel需要的计算节点(看上面)
net = AlexNet(input_shape, num_classes, learning_rate, self.graph)
self.model = FedModel(*net)
# initialize 初始化
with self.graph.as_default():
self.sess.run(tf.global_variables_initializer())
# Load Cifar-10 dataset
# NOTE: len(self.dataset.train) == clients_num
# 加载数据集。对于训练集:`self.dataset.train[56]`可以获取56号client的数据集
# `self.dataset.train[56].next_batch(32)`可以获取56号client的一个batch,大小为32
# 对于测试集,所有client共用一个测试集,因此:
# `self.dataset.test.next_batch(1000)`将获取大小为1000的数据集(无随机)
self.dataset = Dataset(tf.keras.datasets.cifar10.load_data,
split=clients_num)
def run_test(self, num):
"""
Predict the testing set, and report the acc and loss
预测测试集,返回准确率和loss
num: number of testing instances
"""
pass
def train_epoch(self, cid, batch_size=32, dropout_rate=0.5):
"""
Train one client with its own data for one epoch
用`cid`号的client的数据对模型进行训练
cid: Client id
"""
pass
def choose_clients(self, ratio=1.0):
"""
randomly choose some clients
随机选择`ratio`比例的clients,返回编号(也就是下标)
"""
client_num = self.get_clients_num()
choose_num = math.floor(client_num * ratio)
return np.random.permutation(client_num)[:choose_num]
def get_clients_num(self):
""" 返回clients的数量 """
return len(self.dataset.train)
细心的同学可能已经发现了,类名是Clients
是复数,表示一堆Clients的集合。但模型self.model
只有一个,原因是:不同Clients的模型实际上是一样的,只是数据不同;类成员self.dataset
已经对数据进行了划分,需要不同client参与训练时,只需要用Server给的变量值把模型变量覆盖掉,再用下标cid
找到该Client的数据进行训练就得了。
当然,这样实现的最重要原因,是避免构建那么多个Client的计算图。咱没那么多显存TAT
概括一下:联邦学习的Clients,只是普通TF训练模型代码上,加上模型变量的值提取、赋值功能。
按照套路,明确一下Server端代码的主要任务:
简单起见,我们Server端的代码不再抽象成一个类,而是以脚本的形式编写。首先,实例化咱们上面定义的Clients:
from Client import Clients
def buildClients(num):
learning_rate = 0.0001
num_input = 32 # image shape: 32*32
num_input_channel = 3 # image channel: 3
num_classes = 10 # Cifar-10 total classes (0-9 digits)
#create Client and model
return Clients(input_shape=[None, num_input, num_input, num_input_channel],
num_classes=num_classes,
learning_rate=learning_rate,
clients_num=num)
CLIENT_NUMBER = 100
client = buildClients(CLIENT_NUMBER)
global_vars = client.get_client_vars()
client
变量储存着CLIENT_NUMBER
个Clients的模型(实际上只有一个计算图)和数据。global_vars
储存着Server端的模型变量值,也就是我们大名鼎鼎的训练目标,目前它只是Client端模型初始化的值。
接下来,对于Server的一个epoch,Server会随机挑选一定比例的Clients参与这轮训练,分别把当前的Server端模型global_vars
交给它们进行更新,并分别收集它们更新后的变量。本轮参与训练的Clients都收集后,平均一下这些更新后的变量值,就得到新一轮的Server端模型,然后进行下一个epoch。下面是循环epoch更新的代码,仔细看注释哦:
def run_global_test(client, global_vars, test_num):
""" 跑一下测试集,输出ACC和Loss """
client.set_global_vars(global_vars)
acc, loss = client.run_test(test_num)
print("[epoch {}, {} inst] Testing ACC: {:.4f}, Loss: {:.4f}".format(
ep + 1, test_num, acc, loss))
CLIENT_RATIO_PER_ROUND = 0.12 # 每轮挑选clients跑跑看的比例
epoch = 360 # epoch上限
for ep in range(epoch):
# We are going to sum up active clients' vars at each epoch
# 用来收集Clients端的参数,全部叠加起来(节约内存)
client_vars_sum = None
# Choose some clients that will train on this epoch
# 随机挑选一些Clients进行训练
random_clients = client.choose_clients(CLIENT_RATIO_PER_ROUND)
# Train with these clients
# 用这些Clients进行训练,收集它们更新后的模型
for client_id in tqdm(random_clients, ascii=True):
# Restore global vars to client's model
# 将Server端的模型加载到Client模型上
client.set_global_vars(global_vars)
# train one client
# 训练这个下标的Client
client.train_epoch(cid=client_id)
# obtain current client's vars
# 获取当前Client的模型变量值
current_client_vars = client.get_client_vars()
# sum it up
# 把各个层的参数叠加起来
if client_vars_sum is None:
client_vars_sum = current_client_vars
else:
for cv, ccv in zip(client_vars_sum, current_client_vars):
cv += ccv
# obtain the avg vars as global vars
# 把叠加后的Client端模型变量 除以 本轮参与训练的Clients数量
# 得到平均模型、作为新一轮的Server端模型参数
global_vars = []
for var in client_vars_sum:
global_vars.append(var / len(random_clients))
# run test on 1000 instances
# 跑一下测试集、输出一下
run_global_test(client, global_vars, test_num=600)
经过那么一些轮的迭代,我们就可以得到Server端的训练好的模型参数global_vars
了。虽然它逻辑很简单,但我希望观众老爷们能注意到其中的两个联邦点:Server端代码没有接触到数据;每次参与训练的Clients数量相对于整体来说是很少的。
如果要更换模型,只需要实现新的模型计算图构造函数,替换Client端的AlexNet
函数,保证它能返回那一系列的计算节点即可。
如果要实现Non-I.I.D.的数据分布,只需要修改Dataset.py
中的数据划分方式。但是,我稍微试验了一下,目前这个模型+训练方式,不能应对极度Non-I.I.D.的情况。也反面证明了,Non-I.I.D.确实是联邦学习的一个难题。
如果要Clients和Server之间传模型梯度,需要把Client端的计算梯度和更新变量分开,中间插入和Server端的交互,交互内容就是梯度。这样说有点抽象,很多同学可能经常用Optimizer.minimize
(文档在这),但并不知道它是另外两个函数的组合,分别为:compute_gradients()
和apply_gradients()
。前者是计算梯度,后者是把梯度按照学习率更新到变量上。把梯度拿到后,交给Server,Server返回一个全局平均后的梯度再更新模型。尝试过是可行的,但是并不能减少传输量,而且单机模拟实现难度大了许多。
如果要分布式部署,那就把Clients端代码放在flask等web后端服务下进行部署,Server端通过网络传输与Clients进行通信。需要注意,Server端发起请求的时候,可能因为参数量太大导致一些问题,考虑换个非HTTP协议。
一共有四个代码文件,他们应当放在同一个文件目录下:
我也将它们传到了Github上,仓库链接:https://github.com/Zing22/tf-fed-demo。下面开始分别贴出它们的完整代码,其中的注释只有我边打码边写的一点点,上文的介绍中补充了更多中文注释。运行方法非常简单:
python Server.py
import tensorflow as tf
import numpy as np
from collections import namedtuple
import math
from Model import AlexNet
from Dataset import Dataset
# The definition of fed model
FedModel = namedtuple('FedModel', 'X Y DROP_RATE train_op loss_op acc_op')
class Clients:
def __init__(self, input_shape, num_classes, learning_rate, clients_num):
self.graph = tf.Graph()
self.sess = tf.Session(graph=self.graph)
# Call the create function to build the computational graph of AlexNet
net = AlexNet(input_shape, num_classes, learning_rate, self.graph)
self.model = FedModel(*net)
# initialize
with self.graph.as_default():
self.sess.run(tf.global_variables_initializer())
# Load Cifar-10 dataset
# NOTE: len(self.dataset.train) == clients_num
self.dataset = Dataset(tf.keras.datasets.cifar10.load_data,
split=clients_num)
def run_test(self, num):
with self.graph.as_default():
batch_x, batch_y = self.dataset.test.next_batch(num)
feed_dict = {
self.model.X: batch_x,
self.model.Y: batch_y,
self.model.DROP_RATE: 0
}
return self.sess.run([self.model.acc_op, self.model.loss_op],
feed_dict=feed_dict)
def train_epoch(self, cid, batch_size=32, dropout_rate=0.5):
"""
Train one client with its own data for one epoch
cid: Client id
"""
dataset = self.dataset.train[cid]
with self.graph.as_default():
for _ in range(math.ceil(dataset.size // batch_size)):
batch_x, batch_y = dataset.next_batch(batch_size)
feed_dict = {
self.model.X: batch_x,
self.model.Y: batch_y,
self.model.DROP_RATE: dropout_rate
}
self.sess.run(self.model.train_op, feed_dict=feed_dict)
def get_client_vars(self):
""" Return all of the variables list """
with self.graph.as_default():
client_vars = self.sess.run(tf.trainable_variables())
return client_vars
def set_global_vars(self, global_vars):
""" Assign all of the variables with global vars """
with self.graph.as_default():
all_vars = tf.trainable_variables()
for variable, value in zip(all_vars, global_vars):
variable.load(value, self.sess)
def choose_clients(self, ratio=1.0):
""" randomly choose some clients """
client_num = self.get_clients_num()
choose_num = math.floor(client_num * ratio)
return np.random.permutation(client_num)[:choose_num]
def get_clients_num(self):
return len(self.dataset.train)
import tensorflow as tf
from tqdm import tqdm
from Client import Clients
def buildClients(num):
learning_rate = 0.0001
num_input = 32 # image shape: 32*32
num_input_channel = 3 # image channel: 3
num_classes = 10 # Cifar-10 total classes (0-9 digits)
#create Client and model
return Clients(input_shape=[None, num_input, num_input, num_input_channel],
num_classes=num_classes,
learning_rate=learning_rate,
clients_num=num)
def run_global_test(client, global_vars, test_num):
client.set_global_vars(global_vars)
acc, loss = client.run_test(test_num)
print("[epoch {}, {} inst] Testing ACC: {:.4f}, Loss: {:.4f}".format(
ep + 1, test_num, acc, loss))
#### SOME TRAINING PARAMS ####
CLIENT_NUMBER = 100
CLIENT_RATIO_PER_ROUND = 0.12
epoch = 360
#### CREATE CLIENT AND LOAD DATASET ####
client = buildClients(CLIENT_NUMBER)
#### BEGIN TRAINING ####
global_vars = client.get_client_vars()
for ep in range(epoch):
# We are going to sum up active clients' vars at each epoch
client_vars_sum = None
# Choose some clients that will train on this epoch
random_clients = client.choose_clients(CLIENT_RATIO_PER_ROUND)
# Train with these clients
for client_id in tqdm(random_clients, ascii=True):
# Restore global vars to client's model
client.set_global_vars(global_vars)
# train one client
client.train_epoch(cid=client_id)
# obtain current client's vars
current_client_vars = client.get_client_vars()
# sum it up
if client_vars_sum is None:
client_vars_sum = current_client_vars
else:
for cv, ccv in zip(client_vars_sum, current_client_vars):
cv += ccv
# obtain the avg vars as global vars
global_vars = []
for var in client_vars_sum:
global_vars.append(var / len(random_clients))
# run test on 1000 instances
run_global_test(client, global_vars, test_num=600)
#### FINAL TEST ####
run_global_test(client, global_vars, test_num=10000)
import numpy as np
from tensorflow.keras.utils import to_categorical
class BatchGenerator:
def __init__(self, x, yy):
self.x = x
self.y = yy
self.size = len(x)
self.random_order = list(range(len(x)))
np.random.shuffle(self.random_order)
self.start = 0
return
def next_batch(self, batch_size):
if self.start + batch_size >= len(self.random_order):
overflow = (self.start + batch_size) - len(self.random_order)
perm0 = self.random_order[self.start:] +\
self.random_order[:overflow]
self.start = overflow
else:
perm0 = self.random_order[self.start:self.start + batch_size]
self.start += batch_size
assert len(perm0) == batch_size
return self.x[perm0], self.y[perm0]
# support slice
def __getitem__(self, val):
return self.x[val], self.y[val]
class Dataset(object):
def __init__(self, load_data_func, one_hot=True, split=0):
(x_train, y_train), (x_test, y_test) = load_data_func()
print("Dataset: train-%d, test-%d" % (len(x_train), len(x_test)))
if one_hot:
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
if split == 0:
self.train = BatchGenerator(x_train, y_train)
else:
self.train = self.splited_batch(x_train, y_train, split)
self.test = BatchGenerator(x_test, y_test)
def splited_batch(self, x_data, y_data, count):
res = []
l = len(x_data)
for i in range(0, l, l//count):
res.append(
BatchGenerator(x_data[i:i + l // count],
y_data[i:i + l // count]))
return res
import tensorflow as tf
import numpy as np
from tensorflow.compat.v1.train import AdamOptimizer
#### Create tf model for Client ####
def AlexNet(input_shape, num_classes, learning_rate, graph):
"""
Construct the AlexNet model.
input_shape: The shape of input (`list` like)
num_classes: The number of output classes (`int`)
learning_rate: learning rate for optimizer (`float`)
graph: The tf computation graph (`tf.Graph`)
"""
with graph.as_default():
X = tf.placeholder(tf.float32, input_shape, name='X')
Y = tf.placeholder(tf.float32, [None, num_classes], name='Y')
DROP_RATE = tf.placeholder(tf.float32, name='drop_rate')
# 1st Layer: Conv (w ReLu) -> Lrn -> Pool
# conv1 = conv(X, 11, 11, 96, 4, 4, padding='VALID', name='conv1')
conv1 = conv(X, 11, 11, 96, 2, 2, name='conv1')
norm1 = lrn(conv1, 2, 2e-05, 0.75, name='norm1')
pool1 = max_pool(norm1, 3, 3, 2, 2, padding='VALID', name='pool1')
# 2nd Layer: Conv (w ReLu) -> Lrn -> Pool with 2 groups
conv2 = conv(pool1, 5, 5, 256, 1, 1, groups=2, name='conv2')
norm2 = lrn(conv2, 2, 2e-05, 0.75, name='norm2')
pool2 = max_pool(norm2, 3, 3, 2, 2, padding='VALID', name='pool2')
# 3rd Layer: Conv (w ReLu)
conv3 = conv(pool2, 3, 3, 384, 1, 1, name='conv3')
# 4th Layer: Conv (w ReLu) splitted into two groups
conv4 = conv(conv3, 3, 3, 384, 1, 1, groups=2, name='conv4')
# 5th Layer: Conv (w ReLu) -> Pool splitted into two groups
conv5 = conv(conv4, 3, 3, 256, 1, 1, groups=2, name='conv5')
pool5 = max_pool(conv5, 3, 3, 2, 2, padding='VALID', name='pool5')
# 6th Layer: Flatten -> FC (w ReLu) -> Dropout
# flattened = tf.reshape(pool5, [-1, 6*6*256])
# fc6 = fc(flattened, 6*6*256, 4096, name='fc6')
flattened = tf.reshape(pool5, [-1, 1 * 1 * 256])
fc6 = fc_layer(flattened, 1 * 1 * 256, 1024, name='fc6')
dropout6 = dropout(fc6, DROP_RATE)
# 7th Layer: FC (w ReLu) -> Dropout
# fc7 = fc(dropout6, 4096, 4096, name='fc7')
fc7 = fc_layer(dropout6, 1024, 2048, name='fc7')
dropout7 = dropout(fc7, DROP_RATE)
# 8th Layer: FC and return unscaled activations
logits = fc_layer(dropout7, 2048, num_classes, relu=False, name='fc8')
# loss and optimizer
loss_op = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,
labels=Y))
optimizer = AdamOptimizer(
learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
# Evaluate model
prediction = tf.nn.softmax(logits)
pred = tf.argmax(prediction, 1)
# accuracy
correct_pred = tf.equal(pred, tf.argmax(Y, 1))
accuracy = tf.reduce_mean(
tf.cast(correct_pred, tf.float32))
return X, Y, DROP_RATE, train_op, loss_op, accuracy
def conv(x, filter_height, filter_width, num_filters,
stride_y, stride_x, name, padding='SAME', groups=1):
"""Create a convolution layer.
Adapted from: https://github.com/ethereon/caffe-tensorflow
"""
# Get number of input channels
input_channels = int(x.get_shape()[-1])
# Create lambda function for the convolution
convolve = lambda i, k: tf.nn.conv2d(
i, k, strides=[1, stride_y, stride_x, 1], padding=padding)
with tf.variable_scope(name) as scope:
# Create tf variables for the weights and biases of the conv layer
weights = tf.get_variable('weights',
shape=[
filter_height, filter_width,
input_channels / groups, num_filters
])
biases = tf.get_variable('biases', shape=[num_filters])
if groups == 1:
conv = convolve(x, weights)
# In the cases of multiple groups, split inputs & weights and
else:
# Split input and weights and convolve them separately
input_groups = tf.split(axis=3, num_or_size_splits=groups, value=x)
weight_groups = tf.split(axis=3,
num_or_size_splits=groups,
value=weights)
output_groups = [
convolve(i, k) for i, k in zip(input_groups, weight_groups)
]
# Concat the convolved output together again
conv = tf.concat(axis=3, values=output_groups)
# Add biases
bias = tf.reshape(tf.nn.bias_add(conv, biases), tf.shape(conv))
# Apply relu function
relu = tf.nn.relu(bias, name=scope.name)
return relu
def fc_layer(x, input_size, output_size, name, relu=True, k=20):
"""Create a fully connected layer."""
with tf.variable_scope(name) as scope:
# Create tf variables for the weights and biases.
W = tf.get_variable('weights', shape=[input_size, output_size])
b = tf.get_variable('biases', shape=[output_size])
# Matrix multiply weights and inputs and add biases.
z = tf.nn.bias_add(tf.matmul(x, W), b, name=scope.name)
if relu:
# Apply ReLu non linearity.
a = tf.nn.relu(z)
return a
else:
return z
def max_pool(x,
filter_height, filter_width,
stride_y, stride_x,
name, padding='SAME'):
"""Create a max pooling layer."""
return tf.nn.max_pool2d(x,
ksize=[1, filter_height, filter_width, 1],
strides=[1, stride_y, stride_x, 1],
padding=padding,
name=name)
def lrn(x, radius, alpha, beta, name, bias=1.0):
"""Create a local response normalization layer."""
return tf.nn.local_response_normalization(x,
depth_radius=radius,
alpha=alpha,
beta=beta,
bias=bias,
name=name)
def dropout(x, rate):
"""Create a dropout layer."""
return tf.nn.dropout(x, rate=rate)