- opencv学习:图像旋转的两种方法,旋转后的图片进行模板匹配代码实现
夜清寒风
学习opencv机器学习人工智能计算机视觉
图像旋转在图像处理中,rotate和rot90是两种常见的图像旋转方法,它们在功能和使用上有一些区别。下面我将分别介绍这两种方法,并解释它们的主要区别rot90方法rot90方法是NumPy提供的一种数组旋转函数,它主要用于对二维数组(如图像)进行90度的旋转。这个方法比较简单,只支持90度的倍数旋转,不支持任意角度旋转。使用NumPy进行旋转使用NumPy的rot90函数对模板图像进行旋转操作。
- opencv 学习 1
木木ainiks
opencv计算机视觉python
opencv学习的第一天#coding:utf-8importcv2ascv#首先读图片src=cv.imread(“img/1.jpg”)#设置图片的名字cv.namedWindow(“1”,cv.WINDOW_AUTOSIZE)#显示图片第一个参数设置图片名,第二个参数图片的地址cv.imshow(“1”,src)cv.waitKey(0)#将图片写入固定位置cv.imwrite(“img/2
- opencv学习:形态学操作和边缘检测算子
夜清寒风
opencv学习人工智能算法计算机视觉
cv2.morphologyEx()是OpenCV库中的一个函数,用于执行更复杂的形态学操作。这个函数可以执行开运算、闭运算、梯度运算、膨胀、腐蚀以及顶帽和黑帽转换等。这些操作通常用于图像预处理,如去除噪声、平滑边界、突出特征等。dst=cv2.morphologyEx(src,op,kernel[,dst[,anchor[,iterations[,borderType[,borderValue]
- 零基础Opencv学习(二)
随风逐流wrx
opencv学习人工智能
图像变换一、边缘检测1:边缘检测Cannycv::MatiamgeCan;cv::Canny(image,iamgeCan,3,9,3);cv::imshow("Canny",iamgeCan);///边缘检测高级用法Canny用法cv::Matdst,edge,gray;dst.create(image.size(),image.type());///图像转灰度图像cv::cvtColor(im
- opencv学习笔记19-opencv焊点(原点)计数
The_xz
opencv学习笔记
一、原理:opencv学习笔记13-opencv连通组件标记实现硬币计数二、不同情况思路:当焊点为背景时,进行反色处理(二值化后若焊点为背景,转化为前景)。三、示例代码:#include#include#include#include#include#includeusingnamespacecv;usingnamespacestd;intmain(){utils::logging::setLog
- opencv学习(十一)之绘图函数
梧桐栖鸦
OpenCV基础opencv2/3基础教程opencv直线circleellipsefillpolyopencv绘图函数
opencv中提供了很多绘图函数,在进行图像处理,对感兴趣区域进行标定时,就需要利用这些绘图函数。现在集中做一个归纳介绍。1.PointPoint常用来指定一幅二维图像中的点。如Pointpt;pt.x=10;pt.y=8;或Pointpt=Point(10,8);其指向的是在图像中(10,8)位置的一个像素点。查找Point引用可以在”core.hpp”文件发现如下语句:typedefPoint
- OpenCV学习路线图
superdont
计算机视觉opencv学习人工智能
下面是针对初学者设计的一个学习路线图:第1周:计算机视觉和OpenCV概述介绍计算机视觉及其应用领域讨论OpenCV的历史、特点和工作原理OpenCV的安装和配置(Windows/Linux/macOS)了解OpenCV的基本数据结构(cv::Mat等)第2周:OpenCV基础图像的基本操作(读取、显示、保存图片)图像的属性(色彩空间、像素访问与修改)图像的几何变换(缩放、旋转、剪切)第3周:图像
- 【Opencv学习】04-图像加法
R三哥哥啊
opencvopencv学习人工智能
文章目录前言一、图像加法混合1.1代码1.2运行结果二、图像的按位运算-组合相加2.1代码2.2运行结果示例:PPT平滑切换运行结果总结前言简单说就是介绍了两张图如何组合在一起。1、混合,透明度和颜色会发生改变2、组合,叠加起来。可以改变大小。3、两张图片如何平滑切换4、学会如何裁剪图片5、明白掩码操作6、如何将图片置于左侧右侧一、图像加法混合OpenCV中的加法与Numpy的加法是有所不同的。O
- OpenCV学习笔记:如何扫描图像、利用查找表和计时
weixin_33772645
人工智能c/c++测试
目的我们将探索以下问题的答案:如何遍历图像中的每一个像素?OpenCV的矩阵值是如何存储的?如何测试我们所实现算法的性能?查找表是什么?为什么要用它?测试用例这里我们测试的,是一种简单的颜色缩减方法。如果矩阵元素存储的是单通道像素,使用C或C++的无符号字符类型,那么像素可有256个不同值。但若是三通道图像,这种存储格式的颜色数就太多了(确切地说,有一千六百多万种)。用如此之多的颜色可能会对我们的
- OpenCV学习记录——形态学处理
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、腐蚀和膨胀二、高级形态学运算三、具体应用代码前言形态学是图像处理中最常用的技术之一,它主要用于从图像中提取有意义的形状信息,例如边界和连通区域,以便后续的识别工作能够捕捉到目标对象最重要的形状特征。此外,细化、像素化和修剪毛刺等技术也常用于图像的预处理和后处理,以增强图像质量。形态学转换主要有腐蚀和膨胀、开运算和闭运算、顶帽和底帽一、腐蚀和膨胀腐蚀和膨胀是两种最基本、最重要的形态学
- opencv学习记录——(15)模板匹配
蜡笔小新qqq
opencv学习计算机视觉
一、单模板匹配#include"opencv2/opencv.hpp"#includeusingnamespacestd;usingnamespacecv;voidmain(){///单模板匹配Mattemp=imread("temp.png");//模板图像Matsrc=imread("src.png");//待搜索图像即原图imshow("temp",temp);imshow("src",sr
- Opencv学习笔记——特征匹配
纸箱里的猫咪
Opencv学习笔记opencv计算机视觉学习
文章目录Brute-Force蛮力匹配1对1的匹配k对最佳匹配随机抽样一致算法(Randomsampleconsensus,RANSAC)单应性矩阵Brute-Force蛮力匹配 通过SIFT算法可以得到图像关键点,通过比较两张图像的关键点,也就是比较关键点向量之间的差异,Brute-Force蛮力匹配通过比较特征向量,离得最近的特征向量也就是最相似的。默认的是用归一化的欧氏距离。bf=cv2.
- OpenCV学习记录——特征匹配
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、暴力匹配步骤分析二、代码分析前言特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。一、暴力匹配步骤分析暴力匹配是一种简单直接的匹配方法,它遍历所有特征点的描述符,并计算它们之间的距离。然后根据距离进行排序,选择距离最短的特征点作为匹配点。虽然暴力匹配方法简单,但在
- OpenCV学习记录——轮廓检测
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、寻找、绘制轮廓二、具体应用代码前言寻找目标图像的轮廓并绘制出该轮廓是我们进行图像识别时常用的手段,轮廓是图像中连续的边界线,可以用于物体检测、形状分析等应用。为了获取更高的准确性,会先进行二值化处理,在得到二进制图像后,寻找轮廓就是从黑色背景中找到白色物体,因此我们要找的对象应是白色,背景应该是黑色。一、寻找、绘制轮廓(一)寻找图像轮廓寻找图像轮廓函数如下:contours,hie
- OpenCV学习笔记(Python)—— 批量提取图像轮廓并保存结果到保持原始结构的输出目录
六个核桃Lu
OpenCV学习opencv人工智能python图像处理计算机视觉
批量处理图像,对每个图像提取轮廓内的区域并将轮廓外的区域设置为白色背景,然后保存处理后的图像到指定的输出目录,同时保持与输入目录相同的文件和目录结构。importcv2importnumpyasnpimportosfromtqdmimporttqdmdefprocess_image(input_path,output_path):#读取图像img=cv2.imread(input_path)ifi
- OpenCV学习记录——图像的绘制
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、绘制直线二、绘制矩形三、绘制圆形四、绘制文本前言我们在进行图像处理的过程中,通常需要进行划线、画矩形框锁定目标等操作来凸显指定目标,OpenCV提供了方便的绘图功能,可以进行直线、矩形、圆、文本文字等内容的绘制,这篇文章将记录OpenCV中图像的绘制相关内容。一、绘制直线绘制直线的函数如下:cv2.line(image,pt1,pt2,color,thickness)其中,五个参数
- OpenCV学习记录——阈值处理(全局阈值处理、自适应阈值处理)
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录一、学习目的二、图像二值化三、全局阈值处理四、自适应阈值处理一、学习目的在进行图像处理时,我们通常要进行颜色识别等一系列需要进行图像阈值处理的操作,今天我们就记录一下opencv进行阈值处理的一些基本操作和代码二、图像二值化我们首先要明白一个概念,图像二值化就是将图像上的像素点的灰度值设置为两个值,一般为0(表示黑色)和255(表示白色),可以将整个图像呈现出明显的黑白效果。最常用的方法就
- OpenCV学习记录——平滑处理
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、图像噪声二、图像平滑处理三、完整应用代码前言当我们用树莓派进行opencv图像处理时,摄像头所获取的图像质量通常会有所下降,此时,需要多种手段来优化图像的质量,提高图像识别的准度。今天所记录的是当图片经过传输等过程后出现的图像噪声现象及对应解决方法——平滑一、图像噪声在数字图像的采集、处理和传输过程中,可能会受到各种噪声的干扰,这会导致图像质量下降、图像变得模糊,甚至使图像的特征难
- OpenCV学习记录——边缘检测
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、边缘检测原理二、Canny边缘检测算法三、具体应用代码前言在做某些图像处理时,通常需要将识别到的物体边界提取出来,从而帮助我们实现目标检测,这就需要用到边缘检测,例如人脸识别和运动目标的检测都需要先进行边缘检测,这篇文章就记录一下边缘检测的原理及应用代码。一、边缘检测原理边缘检测是图像处理和计算机视觉中的基本问题,其目的在于标识数字图像中亮度变化明显的点,图像边缘检测大幅度地减少了
- opencv学习 机器学习
小猴啊0.0
opencv学习机器学习
Kmeansdoublecv::kmeans(InputArraydataintkInputOutputArraybestLabels//输出的所有样本的标签数组TermCriteriacriteriaintattempts//采样不同初始化标签的尝试次数intflag//中心点初始化方法,支持KMEANS_RANDOM_CENTERS//KMEANS_PP_CENTERS//KMEANS_USE
- opencv学习二值分析
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》二值分析:常见的二值化方法:基于全局阈值(threshold)得到的二值图像;基于自适应阈值(adaptiveThreshold)得到的二值图像;边缘检测(Canny)基于像素值范围(inRange)thresholdthresholdType介绍:THRESH_BINARY表示大于thresh的取maxval,否则取0;THRESH_BI
- 【Opencv学习】03-读取图片信息
R三哥哥啊
opencvopencv学习人工智能
前言几乎所有这些操作与Numpy的关系都比与OpenCV的关系更加紧密,因此熟练Numpy可以帮助我们写出性能更好的代码。Numpy是经过优化了的进行快速矩阵运算的软件包。所以我们不推荐逐个获取像素值并修改,这样会很慢,能有矩阵运算就不要用循环。读取像素点在计算机视觉和图像处理中,图像是由像素点组成的。每个像素点包含了颜色(在彩色图像中)和亮度(在灰度图像中)的信息。通过读取和操作这些像素点,我们
- 【Opencv学习】01-对图像进行简单的操作
R三哥哥啊
opencv学习python
首先了解一下什么是init.pyi文件文件init.pyi文件是Python中的类型提示文件,用于提供对特定包或模块的类型信息。它是类型提示的一种形式,用于描述包、模块、类、函数和变量的静态类型。在Python中,类型提示的目的是为了提供代码编辑器和静态类型检查工具更好的代码补全、类型检查和类型推断功能。init.pyi文件被放置在包或模块的目录中,并且可以包含该包或模块定义的类、函数、方法和变量
- 【Python_Opencv图像处理框架】信用卡数字识别项目
畅游星辰大海
#Python_Opencvopencvpython图像处理
写在前面本篇文章是opencv学习的第六篇文章,前面主要讲解了对图像的一些基本操作,这篇文章我们就开始大展身手,将前面所学的基础操作活学活用。既能复习基础操作,又能学到一些新的知识。作为初学者,我尽己所能,但仍会存在疏漏的地方,希望各位看官不吝指正写在中间(1)简单介绍我们通过opencv提供的一些函数,来实现基础操作,看完本篇文章,你就能轻松地将这信用卡上的数字识别出来该技术首先通过图像处理技术
- opencv学习 特征提取
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》图像金字塔略拉普拉斯金字塔对输入图像进行reduce操作会生成不同分辨率的图像,对这些图像进行expand操作,然后使用reduce减去expand之后的结果,就会得到拉普拉斯金字塔图像。详情可查看https://zhuanlan.zhihu.com/p/80362140图像金字塔融合拉普拉斯金字塔通过源图像减去先缩小再放大的图像构成,保留
- opencv学习形态学分析
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》膨胀操作与腐蚀操作膨胀操作一定程度上会把相邻的对象连接起来成为一个对象;腐蚀操作会让对象面积变小或者擦除小的对象。//膨胀操作voidcv::dilate(InputArraysrcOutputArraydstInputArraykernelPointanchor=Point(-1,-1)intiterations=1intborderTy
- OpenCV学习笔记2——视频的读取与处理
风痕天际
opencv学习笔记opencv学习笔记计算机视觉音视频
目录一、视频内容读取二、将视频中的每一帧转换为灰度图三、退出程序一、视频内容读取cv2中的“VideoCapture”函数可以捕获摄像头,用数字来控制不同的设备,如果是视频文件则直接指定路径。importcv2vc=cv2.VideoCapture('1.mp4')whileTrue:ret,frame=vc.read()ifframeisNone:breakifret==True:gray=cv
- OpenCV学习笔记4——边界填充
风痕天际
opencv学习笔记opencv学习笔记
边界填充,即将图片扩大一圈。代码如下:importcv2frommatplotlibimportpyplotaspltimg=cv2.imread('3.jpg')top_size,bottom_size,left_size,right_size=(50,50,50,50)replicate=cv2.copyMakeBorder(img,top_size,bottom_size,left_size
- OpenCV学习笔记1——图像读取与信息提取
风痕天际
opencv学习笔记opencvpython计算机视觉
目录一、计算机眼中的图像二、通过代码对图像进行操作1.图像的读取2.图像的显示三、将图像读取为灰度图像四、保存图像一、计算机眼中的图像在计算机中,图像被视为一个高度×宽度的像素矩阵,每一个矩阵内存放着该像素的色彩信息。计算机中大多采用RGB颜色标准,即通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色。部分颜色对应RGB值:白色:rgb(255,255,
- opencv学习-几种角点检测方法
wyw0000
opencvopencv学习计算机视觉
角点基本概念角点通常被定义为两条边的交点,或者说,角点的局部邻域应该具有两个不同区域的不同方向的边界。角点检测(CornerDetection)是计算机视觉系统中获取图像特征的一种方法,广泛应用于运动检测、图像匹配、视频跟踪、三维重建和目标识别等,也可称为特征点检测。目前,角点检测算法还不是十分完善,许多算法需要依赖大量的训练集和冗余数据来防止和减少错误的特征的出现。对于角点检测算法的重要评价标准
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f