看《机器学习(西瓜书)》可以理解SVM的推导过程,重点是看附录理解“对偶问题”,以及核函数的定义。
SVM的代码主要是SMO算法的实现,主要参考《统计学习方法》,即如何选择pair进行优化,收敛后即可得到α、w、b
# _*_ coding:utf-8 _*_
from numpy import *
def loadDataSet(filename): #读取数据
dataMat=[]
labelMat=[]
fr=open(filename)
for line in fr.readlines():
lineArr=line.strip().split()
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(float(lineArr[2]))
return dataMat,labelMat #返回数据特征和数据类别
def selectJrand(i,m): #在0-m中随机选择一个不是i的整数
j=i
while (j==i):
j=int(random.uniform(0,m))
return j
def clipAlpha(aj,H,L): #保证a在L和H范围内(L <= a <= H)
if aj>H:
aj=H
if L>aj:
aj=L
return aj
def kernelTrans(X, A, kTup): #核函数,输入参数,X:支持向量的特征树;A:某一行特征数据;kTup:('lin',k1)核函数的类型和参数
m,n = shape(X)
K = mat(zeros((m,1)))
if kTup[0]=='lin': #线性函数
K = X * A.T
elif kTup[0]=='rbf': # 径向基函数(radial bias function)
for j in range(m):
deltaRow = X[j,:] - A
K[j] = deltaRow*deltaRow.T
K = exp(K/(-1*kTup[1]**2)) #返回生成的结果
else:
raise NameError('Houston We Have a Problem -- That Kernel is not recognized')
return K
#定义类,方便存储数据
class optStruct:
def __init__(self, dataMatIn, classLabels, C, toler, kTup): # 存储各类参数
self.X = dataMatIn #数据特征
self.labelMat = classLabels #数据类别
self.C = C #软间隔参数C,参数越大,非线性拟合能力越强
self.tol = toler #停止阀值
self.m = shape(dataMatIn)[0] #数据行数
self.alphas = mat(zeros((self.m, 1)))
self.b = 0 #初始设为0
self.eCache = mat(zeros((self.m, 2))) # 缓存
self.K = mat(zeros((self.m, self.m))) # 核函数的计算结果
for i in range(self.m):
self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
def calcEk(oS, k): #计算Ek(参考《统计学习方法》p127公式7.105)
fXk = float(multiply(oS.alphas, oS.labelMat).T*oS.K[:, k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek
#随机选取aj,并返回其E值
def selectJ(i, oS, Ei):
maxK = -1
maxDeltaE = 0
Ej = 0
oS.eCache[i] = [1, Ei]
validEcacheList = nonzero(oS.eCache[:,0].A)[0] #返回矩阵中的非零位置的行数
if (len(validEcacheList)) > 1:
for k in validEcacheList:
if k == i:
continue
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE): #返回步长最大的aj
maxK = k
maxDeltaE = deltaE
Ej = Ek
return maxK, Ej
else:
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej
def updateEk(oS, k): #更新os数据
Ek = calcEk(oS, k)
oS.eCache[k] = [1, Ek]
#首先检验ai是否满足KKT条件,如果不满足,随机选择aj进行优化,更新ai,aj,b值
def innerL(i, oS): #输入参数i和所有参数数据
Ei = calcEk(oS, i) #计算E值(预测值与真实值之间的差距)
if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
#检验这行数据是否符合KKT条件 参考《统计学习方法》p128公式7.111-113
j,Ej = selectJ(i, oS, Ei) #随机选取aj,并返回其E值
alphaIold = oS.alphas[i].copy()
alphaJold = oS.alphas[j].copy()
if (oS.labelMat[i] != oS.labelMat[j]): #以下代码的公式参考《统计学习方法》p126
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L==H:
print("L==H")
return 0
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #参考《统计学习方法》p127公式7.107
if eta >= 0:
print("eta>=0")
return 0
oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta #参考《统计学习方法》p127公式7.106
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) #参考《统计学习方法》p127公式7.108
updateEk(oS, j)
if (abs(oS.alphas[j] - alphaJold) < oS.tol): #alpha变化大小阀值(自己设定)
print("j not moving enough")
return 0
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#参考《统计学习方法》p127公式7.109
updateEk(oS, i) #更新数据
#以下求解b的过程,参考《统计学习方法》p129公式7.114-7.116
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
if (0 < oS.alphas[i] 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet:
for i in range(oS.m): # 遍历所有数据
alphaPairsChanged += innerL(i, oS)
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
# 显示第多少次迭代,那行特征数据使alpha发生了改变,这次改变了多少次alpha
iter += 1
else:
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs: #遍历非边界的数据
alphaPairsChanged += innerL(i, oS)
print("non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged))
iter += 1
if entireSet:
entireSet = False
elif (alphaPairsChanged == 0):
entireSet = True
print("iteration number: %d" % iter)
return oS.b,oS.alphas
def testRbf(data_train, data_test):
dataArr, labelArr = loadDataSet(data_train) #读取训练数据
b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', 1.3)) # 通过SMO算法得到b和alpha
datMat = mat(dataArr)
labelMat = mat(labelArr).transpose()
svInd = nonzero(alphas)[0] # 选取不为0数据的行数(也就是支持向量)
sVs = datMat[svInd] # 支持向量的特征数据
labelSV = labelMat[svInd] # 支持向量的类别(1或-1)
print("there are %d Support Vectors" % shape(sVs)[0]) # 打印出共有多少的支持向量
m, n = shape(datMat) #训练数据的行列数
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', 1.3)) #将支持向量转化为核函数
predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
#这一行的预测结果(代码来源于《统计学习方法》p133里面最后用于预测的公式)注意最后确定的分离平面只有那些支持向量决定。
if sign(predict) != sign(labelArr[i]): # sign函数 -1 if x < 0, 0 if x==0, 1 if x > 0
errorCount += 1
print("the training error rate is: %f" % (float(errorCount)/m)) #打印出错误率
dataArr_test, labelArr_test = loadDataSet(data_test) #读取测试数据
errorCount_test = 0
datMat_test=mat(dataArr_test)
labelMat = mat(labelArr_test).transpose()
m,n = shape(datMat_test)
for i in range(m): #在测试数据上检验错误率
kernelEval = kernelTrans(sVs,datMat_test[i,:],('rbf', 1.3))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr_test[i]):
errorCount_test += 1
print("the test error rate is: %f" % (float(errorCount_test)/m))
#主程序
def main():
filename_traindata='D:/MLCode/SVM/traindata.txt'
filename_testdata='D:/MLCode/SVM/testdata.txt'
testRbf(filename_traindata,filename_testdata)
if __name__=='__main__':
main()
-0.214824 0.662756 -1.000000 -0.061569 -0.091875 1.000000 0.406933 0.648055 -1.000000 0.223650 0.130142 1.000000 0.231317 0.766906 -1.000000 -0.748800 -0.531637 -1.000000 -0.557789 0.375797 -1.000000 0.207123 -0.019463 1.000000 0.286462 0.719470 -1.000000 0.195300 -0.179039 1.000000 -0.152696 -0.153030 1.000000 0.384471 0.653336 -1.000000 -0.117280 -0.153217 1.000000 -0.238076 0.000583 1.000000 -0.413576 0.145681 1.000000 0.490767 -0.680029 -1.000000 0.199894 -0.199381 1.000000 -0.356048 0.537960 -1.000000 -0.392868 -0.125261 1.000000 0.353588 -0.070617 1.000000 0.020984 0.925720 -1.000000 -0.475167 -0.346247 -1.000000 0.074952 0.042783 1.000000 0.394164 -0.058217 1.000000 0.663418 0.436525 -1.000000 0.402158 0.577744 -1.000000 -0.449349 -0.038074 1.000000 0.619080 -0.088188 -1.000000 0.268066 -0.071621 1.000000 -0.015165 0.359326 1.000000 0.539368 -0.374972 -1.000000 -0.319153 0.629673 -1.000000 0.694424 0.641180 -1.000000 0.079522 0.193198 1.000000 0.253289 -0.285861 1.000000 -0.035558 -0.010086 1.000000 -0.403483 0.474466 -1.000000 -0.034312 0.995685 -1.000000 -0.590657 0.438051 -1.000000 -0.098871 -0.023953 1.000000 -0.250001 0.141621 1.000000 -0.012998 0.525985 -1.000000 0.153738 0.491531 -1.000000 0.388215 -0.656567 -1.000000 0.049008 0.013499 1.000000 0.068286 0.392741 1.000000 0.747800 -0.066630 -1.000000 0.004621 -0.042932 1.000000 -0.701600 0.190983 -1.000000 0.055413 -0.024380 1.000000 0.035398 -0.333682 1.000000 0.211795 0.024689 1.000000 -0.045677 0.172907 1.000000 0.595222 0.209570 -1.000000 0.229465 0.250409 1.000000 -0.089293 0.068198 1.000000 0.384300 -0.176570 1.000000 0.834912 -0.110321 -1.000000 -0.307768 0.503038 -1.000000 -0.777063 -0.348066 -1.000000 0.017390 0.152441 1.000000 -0.293382 -0.139778 1.000000 -0.203272 0.286855 1.000000 0.957812 -0.152444 -1.000000 0.004609 -0.070617 1.000000 -0.755431 0.096711 -1.000000 -0.526487 0.547282 -1.000000 -0.246873 0.833713 -1.000000 0.185639 -0.066162 1.000000 0.851934 0.456603 -1.000000 -0.827912 0.117122 -1.000000 0.233512 -0.106274 1.000000 0.583671 -0.709033 -1.000000 -0.487023 0.625140 -1.000000 -0.448939 0.176725 1.000000 0.155907 -0.166371 1.000000 0.334204 0.381237 -1.000000 0.081536 -0.106212 1.000000 0.227222 0.527437 -1.000000 0.759290 0.330720 -1.000000 0.204177 -0.023516 1.000000 0.577939 0.403784 -1.000000 -0.568534 0.442948 -1.000000 -0.011520 0.021165 1.000000 0.875720 0.422476 -1.000000 0.297885 -0.632874 -1.000000 -0.015821 0.031226 1.000000 0.541359 -0.205969 -1.000000 -0.689946 -0.508674 -1.000000 -0.343049 0.841653 -1.000000 0.523902 -0.436156 -1.000000 0.249281 -0.711840 -1.000000 0.193449 0.574598 -1.000000 -0.257542 -0.753885 -1.000000 -0.021605 0.158080 1.000000 0.601559 -0.727041 -1.000000 -0.791603 0.095651 -1.000000 -0.908298 -0.053376 -1.000000 0.122020 0.850966 -1.000000 -0.725568 -0.292022 -1.000000
0.676771 -0.486687 -1.000000 0.008473 0.186070 1.000000 -0.727789 0.594062 -1.000000 0.112367 0.287852 1.000000 0.383633 -0.038068 1.000000 -0.927138 -0.032633 -1.000000 -0.842803 -0.423115 -1.000000 -0.003677 -0.367338 1.000000 0.443211 -0.698469 -1.000000 -0.473835 0.005233 1.000000 0.616741 0.590841 -1.000000 0.557463 -0.373461 -1.000000 -0.498535 -0.223231 -1.000000 -0.246744 0.276413 1.000000 -0.761980 -0.244188 -1.000000 0.641594 -0.479861 -1.000000 -0.659140 0.529830 -1.000000 -0.054873 -0.238900 1.000000 -0.089644 -0.244683 1.000000 -0.431576 -0.481538 -1.000000 -0.099535 0.728679 -1.000000 -0.188428 0.156443 1.000000 0.267051 0.318101 1.000000 0.222114 -0.528887 -1.000000 0.030369 0.113317 1.000000 0.392321 0.026089 1.000000 0.298871 -0.915427 -1.000000 -0.034581 -0.133887 1.000000 0.405956 0.206980 1.000000 0.144902 -0.605762 -1.000000 0.274362 -0.401338 1.000000 0.397998 -0.780144 -1.000000 0.037863 0.155137 1.000000 -0.010363 -0.004170 1.000000 0.506519 0.486619 -1.000000 0.000082 -0.020625 1.000000 0.057761 -0.155140 1.000000 0.027748 -0.553763 -1.000000 -0.413363 -0.746830 -1.000000 0.081500 -0.014264 1.000000 0.047137 -0.491271 1.000000 -0.267459 0.024770 1.000000 -0.148288 -0.532471 -1.000000 -0.225559 -0.201622 1.000000 0.772360 -0.518986 -1.000000 -0.440670 0.688739 -1.000000 0.329064 -0.095349 1.000000 0.970170 -0.010671 -1.000000 -0.689447 -0.318722 -1.000000 -0.465493 -0.227468 -1.000000 -0.049370 0.405711 1.000000 -0.166117 0.274807 1.000000 0.054483 0.012643 1.000000 0.021389 0.076125 1.000000 -0.104404 -0.914042 -1.000000 0.294487 0.440886 -1.000000 0.107915 -0.493703 -1.000000 0.076311 0.438860 1.000000 0.370593 -0.728737 -1.000000 0.409890 0.306851 -1.000000 0.285445 0.474399 -1.000000 -0.870134 -0.161685 -1.000000 -0.654144 -0.675129 -1.000000 0.285278 -0.767310 -1.000000 0.049548 -0.000907 1.000000 0.030014 -0.093265 1.000000 -0.128859 0.278865 1.000000 0.307463 0.085667 1.000000 0.023440 0.298638 1.000000 0.053920 0.235344 1.000000 0.059675 0.533339 -1.000000 0.817125 0.016536 -1.000000 -0.108771 0.477254 1.000000 -0.118106 0.017284 1.000000 0.288339 0.195457 1.000000 0.567309 -0.200203 -1.000000 -0.202446 0.409387 1.000000 -0.330769 -0.240797 1.000000 -0.422377 0.480683 -1.000000 -0.295269 0.326017 1.000000 0.261132 0.046478 1.000000 -0.492244 -0.319998 -1.000000 -0.384419 0.099170 1.000000 0.101882 -0.781145 -1.000000 0.234592 -0.383446 1.000000 -0.020478 -0.901833 -1.000000 0.328449 0.186633 1.000000 -0.150059 -0.409158 1.000000 -0.155876 -0.843413 -1.000000 -0.098134 -0.136786 1.000000 0.110575 -0.197205 1.000000 0.219021 0.054347 1.000000 0.030152 0.251682 1.000000 0.033447 -0.122824 1.000000 -0.686225 -0.020779 -1.000000 -0.911211 -0.262011 -1.000000 0.572557 0.377526 -1.000000 -0.073647 -0.519163 -1.000000 -0.281830 -0.797236 -1.000000 -0.555263 0.126232 -1.000000
https://blog.csdn.net/csqazwsxedc/article/details/71513197
《机器学习》
《统计学习方法》