[rdkit.Chem.rdchem.BondType.ZERO,
rdkit.Chem.rdchem.BondType.SINGLE,
rdkit.Chem.rdchem.BondType.DOUBLE,
rdkit.Chem.rdchem.BondType.TRIPLE,
rdkit.Chem.rdchem.BondType.AROMATIC]
Solver文件里的 build_model
函数中:
# d_conv_dim : [[128, 64], 128, [128, 64]]
# m_dim : self.data.atom_num_types 5
# b_dim : self.data.bond_num_types 4
self.D = Discriminator(self.d_conv_dim, self.m_dim, self.b_dim, self.dropout)
self.D.to(self.device)
train
函数中,实例化 self.D(a_tensor, None, x_tensor)
的同时,调用了 Discriminator中定义的forward
函数:
# a (N, 9, 9) tensor
a = torch.from_numpy(a).to(self.device).long() # Adjacency.
# a (N, 9) matrix
x = torch.from_numpy(x).to(self.device).long() # Nodes.
a_tensor = self.label2onehot(a, self.b_dim)
x_tensor = self.label2onehot(x, self.m_dim)
# a_tensor : [N,9,9,5] x_tensor :torch.Size([16, 9, 5])
logits_real, features_real = self.D(a_tensor, None, x_tensor)
model文件中的定义,初始化过程中初始了GraphConvolution
和 GraphAggregation
层:
class Discriminator(nn.Module):
"""Discriminator network with PatchGAN."""
def __init__(self, conv_dim, m_dim, b_dim, dropout):
super(Discriminator, self).__init__()
# conv_dim : [[128, 64], 128, [128, 64]]
# m_dim : 5 原子类型
# b_dim : 5 边类型
graph_conv_dim, aux_dim, linear_dim = conv_dim
# (5, [128,64], 5, 0)
self.gcn_layer = GraphConvolution(m_dim, graph_conv_dim, b_dim, dropout)
# (64,128,5,0)
self.agg_layer = GraphAggregation(graph_conv_dim[-1], aux_dim, b_dim, dropout)
# multi dense layer
layers = []
for c0, c1 in zip([aux_dim]+linear_dim[:-1], linear_dim):
layers.append(nn.Linear(c0,c1))
layers.append(nn.Dropout(dropout))
self.linear_layer = nn.Sequential(*layers)
self.output_layer = nn.Linear(linear_dim[-1], 1)
def forward(self, adj, hidden, node, activatation=None):
# adj: a (N, 9, 9, 5) tensor
# node: a (N, 9, 5) matrix
adj = adj[:,:,:,1:].permute(0,3,1,2) # adj:torch.Size([16, 4, 9, 9])
annotations = torch.cat((hidden, node), -1) if hidden is not None else node
# h: 16x9x64
h = self.gcn_layer(annotations, adj)
# 16x9x69
annotations = torch.cat((h, hidden, node) if hidden is not None\
else (h, node), -1)
# 16x9x128
h = self.agg_layer(annotations, torch.tanh)
# h: 16x9x64
h = self.linear_layer(h)
# Need to implemente batch discriminator #
##########################################
# 16x9x1
output = self.output_layer(h)
output = activatation(output) if activatation is not None else output
return output, h
由于Discriminator的forward
中有
h = self.gcn_layer(annotations, adj)
而__init__
中定义了:
self.gcn_layer = GraphConvolution(m_dim, graph_conv_dim, b_dim, dropout)
从而调用layers文件中的GraphConvolution
类的forward函数:
目的是下面的公式:目的是不同的边类型都有一个adj
(属性矩阵X)的变换矩阵与之相乘,之后逐元素相加,避免过多的模型参数,但是输出的时候
再RGCN
中是这样定义的,其中W
就是adj
(属性矩阵X)的变换矩阵
但是这个graphConvolution并没有后tanh激活的样子?
# 不同边类型的矩阵乘以同一属性矩阵的变换,然后相同位置求和;再加上属性矩阵的变换;
# 重复上述操作变换为其他维度矩阵
class GraphConvolution(Module):
# (5, [128,64], 4, 0)
# self.gcn_layer = GraphConvolution(m_dim, graph_conv_dim, b_dim, dropout)
def __init__(self, in_features, out_feature_list, b_dim, dropout):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_feature_list = out_feature_list
# 9x128
self.linear1 = nn.Linear(in_features, out_feature_list[0])
# 128x64
self.linear2 = nn.Linear(out_feature_list[0], out_feature_list[1])
self.dropout = nn.Dropout(dropout)
# h = self.gcn_layer(annotations, adj)
# adj:torch.Size([16, 4, 9, 9])
# annotations equal to node: a (16, 9, 5) matrix
def forward(self, input, adj, activation=None):
# hidden: 16x9x5在第二维度叠加4次,是 (16,4,9,128)
hidden = torch.stack([self.linear1(input) for _ in range(adj.size(1))], 1)
# 16x4x9x128
hidden = torch.einsum('bijk,bikl->bijl', (adj, hidden))
# 16x9x128 + 16x9x128
hidden = torch.sum(hidden, 1) + self.linear1(input)
hidden = activation(hidden) if activation is not None else hidden
# 激活之后再做dropout操作
hidden = self.dropout(hidden)
# 16x4x9x64
output = torch.stack([self.linear2(hidden) for _ in range(adj.size(1))], 1)
# 16x4x9x64
output = torch.einsum('bijk,bikl->bijl', (adj, output))
# 16x9x64
output = torch.sum(output, 1) + self.linear2(hidden)
output = activation(output) if activation is not None else output
output = self.dropout(output)
return output
同样,在GCN
调用后,修改annotations
矩阵:
# 16x9x69
annotations = torch.cat((h, hidden, node) if hidden is not None\
else (h, node), -1)
然后调用aggre
:
h = self.agg_layer(annotations, torch.tanh)
# (64,128,5,0)
self.agg_layer = GraphAggregation(graph_conv_dim[-1], aux_dim, b_dim, dropout)
这样之后返回的output是 16x9x128,即每一个原子类型和边类型都一个128维度的embedding了。
对应agg
的公式,i,j都是转换函数,最后激活之后逐个元素点乘, σ \sigma σ 是sigmoid函数;
最后输出的时候做一个tanh激活:
总的目的:对隐层邻接边矩阵乘以属性矩阵的变换 h v h_v hv 与 属性矩阵 x v x_v xv本身做拼接然后变换为一个数值代表整个图。
class GraphAggregation(Module):
# (64,128,5,0)
def __init__(self, in_features, out_features, b_dim, dropout):
super(GraphAggregation, self).__init__()
self.sigmoid_linear = nn.Sequential(nn.Linear(in_features+b_dim, out_features),
nn.Sigmoid())
self.tanh_linear = nn.Sequential(nn.Linear(in_features+b_dim, out_features),
nn.Tanh())
self.dropout = nn.Dropout(dropout)
def forward(self, input, activation):
i = self.sigmoid_linear(input)
j = self.tanh_linear(input)
# i的每个元素乘以j中的每一个元素
# output : Nx128
output = torch.sum(torch.mul(i,j), 1)
output = activation(output) if activation is not None\
else output
output = self.dropout(output)
return output
副一个图,点乘这个输出的意义是什么不太清楚,
返回
# Compute loss with real images.
# logits_real :16x9x1
# features_real :16x9x64
logits_real, features_real = self.D(a_tensor, None, x_tensor)
d_loss_real = - torch.mean(logits_real)
恩。。。