- 解释LLM怎么预测下一个词语的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型python深度学习人工智能机器学习
解释LLM怎么预测下一个词语的通过上文词的向量进行映射在Transformer架构的大语言模型(如GPT系列、BERT等)中,词语会先被转化为词向量。在预测下一个词时,模型会基于之前所有词的向量表示(并非仅仅上一个词,但上一个词的向量是重要信息来源之一)进行计算。以GPT-2为例,在生成文本时,它会将输入文本中每个词对应的词向量依次输入到模型的多层Transformer编码器-解码器结构中。每一层
- ⼤模型(LLMs)基础⾯
cv2016_DL
LLM大模型计算机视觉人工智能llama
1.⽬前主流的开源模型体系有哪些?⽬前主流的开源LLM(语⾔模型)模型体系包括以下⼏个:1.GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的⼀系列基于Transformer架构的语⾔模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在⼤规模⽆标签⽂本上进⾏预训练,然后在特定任务上进⾏微调,具有很强的⽣成能⼒和语⾔理解能⼒。2.BERT(B
- 自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理 Training a GPT-2 language model
段智华
NLP星空智能对话机器人transformer自然语言处理GPT
自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理TrainingaGPT-2languagemodel目录GPT模型简介TrainingaGPT-2languagemodelStep1:Prerequisites星空智能对话机器人系列博客GPT模型简介生成式预训练转换器(GPT)是由OpenAI团队构建的一系列基于深度学习的语言模型。GPT-3是一个预先训练过的
- OpenAI重磅回归开源!首发推理模型不限商用,直面DeepSeek挑战
奋斗的java小伙
gptgpt4ogpt将开源
一夜之间,OpenAI更新三大动向,开源、融资、用户暴增。第一,将开源一个具备推理能力的大语言模型,包含参数权重那种。上一次这样开源还是6年前推出GPT-2。这几乎就是冲着DeepSeek-R1来的。奥特曼表示,这个模型非常强。为了让它更强,现在先招募开发者来收集反馈。而且每个人都能使用。(为了阴阳Llama,奥特曼甚至“铁树开花了”)第二,OpenAI完成最新400亿美元融资,投后估值3000亿
- 【自然语言处理与大模型】大模型(LLM)基础知识①
小oo呆
【自然语言处理与大模型】人工智能自然语言处理语言模型
(1)目前主流的开源模型体系有哪些?1.GTP(GenerativePer_trainedTransformer)系列,是由OpenAI发布的一系列基于Transformer架构的语言模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在大规模无标签文本上进行预训练,然后再特定任务上进行微调,具有很强的生成能力和语言理解能力。2.BERT(BidirectionalEncoderRepres
- GPT-2 小模型剪枝实战:L1 Unstructured 剪枝策略与实现详解
YoanAILab
gpt剪枝算法
本文基于prune_training.py文件,展示如何使用PyTorch对GPT-2Student模型进行L1不规则剪枝(UnstructuredPruning),分析剪枝策略、实现代码、效果影响及保存模型的关键细节,帮助你将训练好的模型进一步轻量化。✂️为什么剪枝?模型训练完成后,仍存在大量“权重占位但几乎不贡献预测”的参数,剪枝可以:✅降低显存使用✅加快推理速度✅保持原模型结构(不影响部署)
- 部署本地大模型并导入本地数据文件的一般步骤
辉腾-T
pythonpipconda计算机视觉语言模型
一、准备工作选择大模型:首先,你需要选择一个适合你任务的大模型,例如,如果你要进行自然语言处理,可以选择GPT系列的开源版本,如GPT-2或GPT-Neo等;对于图像任务,可以考虑DALL-E的开源实现等。你可以从GitHub等开源平台上找到这些模型的开源代码和预训练权重。安装必要的软件和环境:确保你已经安装了Python环境,可以从Python官方网站下载并安装。安装PyTorch或Tensor
- gpt各个版本有什么区别
Waiyuet Fung
GPT(GenerativePre-trainingTransformer)是一种自然语言生成模型,由OpenAI开发。它在自然语言处理任务中表现出色,例如文本生成、翻译和问答。GPT的不同版本主要有以下区别:GPT:这是GPT的第一个版本,它使用了Transformer模型作为基础架构,并使用了预训练的语言模型,可以很好地生成人类般的文本。GPT-2:这是GPT的第二个版本,它在GPT的基础上进
- 一文读懂模型上下文协议(MCP):AI与世界的「万能接口」设计指南
聚客AI
AI大模型应用开发开发语言人工智能langchain语言模型llama自然语言处理chatgpt
更多AI大模型应用开发学习内容,尽在聚客AI学院1.模型上下文协议(MCP)历史发展背景解析从“数据孤岛”到“智能桥梁”的进化早期的语言模型(如GPT-2)依赖静态训练数据,无法动态获取外部信息,导致其应用场景局限于封闭的问答与文本生成,形成“数据孤岛”。随着AI应用复杂化(如多轮对话、企业数据分析),开发者需通过定制API连接外部工具,但面临“N×M问题”——每个模型需独立适配N种数据源,开发效
- AI编译器对比:TVM vs MLIR vs Triton在大模型部署中的工程选择
学术猿之吻
人工智能mlir量子计算pytorch深度学习分布式
引言:大模型部署的编译器博弈随着千亿参数大模型成为常态,推理延迟优化成为系统工程的核心挑战。本文基于NVIDIAA100与GoogleTPUv4平台,通过BERT-base(110M)和GPT-2(1.5B)的实测数据,对比TVM、MLIR、Triton三大编译框架在动态shape支持、算子融合效率、内存管理等方面的工程特性,揭示不同场景下的编译策略选择规律。一、技术架构对比分析1.1TVM:分层
- 大规模语言模型从理论到实践 实践思考
AI天才研究院
AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践实践思考1.背景介绍1.1大规模语言模型的兴起近年来,随着深度学习技术的快速发展,大规模语言模型(LargeLanguageModels,LLMs)受到了学术界和工业界的广泛关注。从2018年的BERT,到2019年的GPT-2,再到2020年的GPT-3,大规模语言模型在自然语言处理(NLP)领域取得了一系列突破性进展,展现出了强大的语言理解和生成能力。1.2大规模语言
- 从零学习大模型(一)-----GPT3(上)
懒惰才能让科技进步
大语言模型gpt-3人工智能深度学习语言模型chatgptpython
GPT-3(GenerativePre-trainedTransformer3)是一种大型自回归语言模型,由OpenAI团队训练和发布。GPT-3拥有1750亿个参数,是当时发布的最大的非稀疏(non-sparse)语言模型之一。其参数规模是前一代模型(如GPT-2)的10倍以上。GPT-3的目标是通过大规模的参数量和广泛的预训练来实现对多种语言任务的few-shot学习,即通过少量示例而无需额外
- Python Transformers 库介绍
qq_27390023
python开发语言生物信息学人工智能
HuggingFace的Transformers库是一个用于自然语言处理(NLP)的强大Python库,它提供了对各种预训练模型的访问和使用接口。该库具有以下特点和功能:主要特点丰富的预训练模型:Transformers库包含了大量的预训练模型,如BERT、GPT-2、RoBERTa、XLNet等。这些模型在大规模的文本数据上进行了预训练,可以用于多种NLP任务。统一的API:提供了统一的API接
- GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(三)
段智华
深入理解ChatGPTgptgpt-3GPT-4ChatGPT国内OpenAI
GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(三)5.3GPT-3内幕机制可视化解析GPT-3是一个基于Transformer的语言模型,通过不同的层次提取语言不同层面的特性,构建整个语言的语义信息,它学习的过程跟人类正常学习的过程是类似的,开始的时候是一个无监督预训练,如图5-5所示,GPT-3模型可以将网络上的所有文档下载下来,包含3000亿个文本标记的数据集
- 【深度学习】GPT-2,Language Models are Unsupervised Multitask Learners,【语言建模】
XD742971636
深度学习机器学习深度学习gpt语言模型
论文:https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf文章目录摘要引言方法2.1训练数据集2.2输入表示2.3模型3.实验3.1语言建模3.2Children’sBookTest3.3LAMBADA3.4Winograd
- 从零构建大语言模型全栈开发指南:第二部分:模型架构设计与实现-2.2.1从零编写类GPT-2模型架构(规划模块与代码组织)
言析数智
从零开始构建大模型人工智能大语言模型嵌入层解码层FFN前馈网络
点击关注不迷路点击关注不迷路点击关注不迷路文章大纲2.2.1从零编写类GPT-2模型架构(规划模块与代码组织)1.模型架构设计规划1.1架构核心组件2.模块化设计实现2.1输入处理模块2.1.1分词与嵌入2.1.2位置编码2.2解码块设计2.2.1多头注意力子层2.2.2前馈网络子层3.代码组织策略3.1模块化架构设计3.2核心类结构设计表2:配置类参数设计4.关键实现细节4.1掩码机制实现4.1
- ChatGPT智能聊天机器人实现
云端源想
chatgpt机器人
以下是一个从零实现类ChatGPT智能聊天机器人的完整开发指南,包含技术选型、核心代码逻辑和推荐学习资源:—云端平台整理一、技术架构与工具核心模型基座模型:HuggingFaceTransformers库(如GPT-2/GPT-3.5TurboAPI/LLaMA2)轻量化方案:微软DeepSpeed或MetaFairScale(降低显存占用)训练框架PyTorchLightning+Acceler
- AI 行业发展趋势:科技创新引领未来变革
我是阿萌
畅聊AI人工智能科技学习
在当今数字化时代,人工智能(AI)行业正以前所未有的速度蓬勃发展,深刻地改变着我们的生活、工作和社会格局。从基础技术的突破到广泛的应用场景拓展,AI展现出了一系列令人瞩目的发展趋势,预示着一个充满无限可能的未来。一、技术创新持续突破模型规模与性能提升AI模型正朝着更大规模、更复杂的方向发展。以GPT系列为代表的大语言模型,参数数量不断攀升,从GPT-2的15亿参数到GPT-4的万亿级参数,模型的语
- 大模型面试--大模型(LLMs)基础面
TAICHIFEI
大模型面试语言模型人工智能
大模型(LLMs)基础面1.目前主流的开源模型体系有哪些?目前主流的开源大模型体系有以下几种:1.Transformer系列Transformer模型是深度学习中的一类重要模型,尤其在自然语言处理(NLP)领域。以下是一些主流的Transformer模型:GPT系列GPT-2和GPT-3:由OpenAI开发的生成式预训练变换器模型,用于生成高质量的文本。GPT-Neo和GPT-J:由Eleuthe
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- 【Hugging Face】transformers 库中 model.generate() 方法:自回归模型的文本生成方法
彬彬侠
HuggingFacemodel.generatetransformersHuggingFace文本生成自回归模型GPTLLAMA
HuggingFacemodel.generate方法model.generate是transformers库中的文本生成(TextGeneration)方法,适用于自回归模型(如GPT-2、T5、BART、LLAMA),用于生成文本、摘要、翻译、问答等。1.适用于哪些模型?generate适用于基于Transformer生成文本的模型,例如:GPT-2(AutoModelForCausalLM)
- GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)
段智华
深入理解ChatGPTChatGPT国内OpenAIGPT-3GPT-4
GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)Gavin大咖微信:NLP_Matrix_Space5.2GPT-2源码实现逐行解析本节讲解GPT-2源码,gpt2.py是一个使用NumPy实现的代码,在代码中实现了GELU激活函数、softmax函数、层归一化、线性层、前馈神经网络、多头自注意力机制、Transformer块、GPT2模型以及文本生成函数,通过
- 从零开始构建一个大语言模型-第五章第五节
释迦呼呼
从零开始构建一个大语言模型语言模型人工智能自然语言处理机器学习pytorch
第五章目录5.1评估生成文本模型5.2训练一个LLM5.3控制随机性的解码策略5.4在PyTorch中加载和保存模型权重5.5从OpenAI加载预训练权重5.5从OpenAI加载预训练权重此前,我们使用一个由一本短篇小说集组成的有限数据集训练了一个小型GPT-2模型。这种方法使我们能够专注于基础知识,而无需大量的时间和计算资源。幸运的是,OpenAI公开分享了他们的GPT-2模型权重,这样我们就无
- gpt-2语言模型训练
谷隐凡二
Python机器学习python人工智能
一、通过下载对应的语言模型数据集1.1根据你想让回答的内容,针对性下载对应的数据集,我下载的是个医疗问答数据集1.2针对你要用到的字段信息进行处理,然后把需要处理的数据丢给模型去训练,这个模型我是直接从GPT2的网站下载下来的依赖的必要文件截图如下:二、具体代码样例实现:importosimportpandasaspdfromtransformersimportGPT2Tokenizer,GPT2
- GPT-3:一个新应用生态系统诞生了
派派AI学院
「某个应用程序用2个基于GPT-3的机器人相互辩论。这是YouTube用户BakzT.Future剖析的14个GPT-3应用程序之一。」GPT-3以其庞大的规模成为OpenAI令人印象深刻的自然语言处理(NLP)模型。Transformerencoder-decoder模型之间由超过1,750亿个被称为参数的单词之间的加权值连接,将其15亿个参数的前身GPT-2打的落花流水。您只要输入要执行的任务
- AIGC从入门到实战:模型搭建【GPT4ALL】
老童聊AI
老童陪你学AIpython明哥陪你学PythonAI编程AIGC人工智能
GPT相关模型的搭建:GPT-2:这是一个较早开源的模型,适合个人研究和学习。它有不同大小的版本,如117M、345M、774M和1.5B参数版本,可以根据你的计算资源选择不同大小的模型。GPT-2模型是基于TensorFlow实现的,你可以在本地环境中安装TensorFlow和相关依赖库来运行此模型5。GPT4All:这是一个开源项目,提供了一个可以在本地运行的GPT模型,不需要网络连接,也不强
- NLP_GPT到ChatGPT
you_are_my_sunshine*
NLP大模型自然语言处理gptchatgpt
文章目录介绍小结介绍从初代GPT到GPT-3,主要经历了下面几个关键时刻。GPT:2018年,OpenAl发布了这款基于Transformer架构的预训练语言模型,其参数数量为1.17亿(117M)。GPT运用单向自回归方法生成文本,先预训练大量无标签文本,再在特定任务上进行微调。GPT在多种NLP任务上取得了显著进步。GPT-2:2019年,OpenAI推出了GPT的升级版,拥有更多参数[15亿
- 大模型基础知识
lichunericli
LLM人工智能语言模型
主流的开源模型体系GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的一系列基于Transformer架构的语言模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在大规模无标签文本上进行预训练,然后在特定任务上进行微调,具有很强的生成能力和语言理解能力。BERT(BidirectionalEncoderRepresentationsfromT
- OpenAI使用的海量数据集介绍
科学禅道
大模型专栏深度学习自然语言处理语言模型人工智能
1.OpenAI使用的数据OpenAI为了训练其尖端的自然语言处理模型,如GPT-4,采用了极为庞大的数据集。虽然具体的细节可能不完全公开,但我们可以根据历史信息和公开报道推测,这些数据集通常包含:WebText:早期版本的GPT(如GPT-2)使用的WebText是一个大规模的网络文本集合,包含了从互联网上抓取的高质量网页内容。书籍数据集:类似于books3这样的数据集,它们包含了成千上万本图书
- GPT-3 训练自己的数据教程详解
mqdlff_python
gpt-3python人工智能GPT-3
安装依赖库:确保你安装了必要的Python库,包括transformers、torch等。pipinstalltorchpipinstalltransformers下载预训练模型:从HuggingFace的模型库中下载GPT-2的预训练权重。fromtransformersimportGPT2Tokenizer,GPT2LMHeadModelmodel_name="gpt2"#或"gpt2-med
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不