- 【Python百日进阶-Web开发-Peewee】Day295 - 查询示例(四)聚合1
岳涛@心馨电脑
Dashpython前端dash
文章目录14.6聚合14.6.1计算设施数量Countthenumberoffacilities14.6.2计算昂贵设施的数量Countthenumberofexpensivefacilities14.6.3计算每个成员提出的建议数量。Countthenumberofrecommendationseachmembermakes.14.6.4列出每个设施预订的总空位Listthetotalslots
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- ITU-T V-Series Recommendations
技术无疆
Othercompressionstandardsprotocolsinterfacenetworkalgorithm
TheITU-TV-SeriesRecommendationsonDatacommunicationoverthetelephonenetworkspecifytheprotocolsthatgovernapprovedmodemcommunicationstandardsandinterfaces.[1]Note:thebisandtersuffixesareITU-Tstandarddesig
- Make It a Chorus: Knowledge- and Time-aware Item Modeling for Sequential Recommendation sigir 20
农场主
机器学习
介绍的博客作者讲解摘要传统的推荐系统主要针对固有的、长期的用户偏好进行建模,而动态的用户需求也是非常重要的。通常,历史消费会影响用户对其关系项的需求。例如,用户倾向于一起购买互补产品(iPhone和AirPods),而不是替代产品(Powerbeats和AirPods),尽管替代购买的产品仍然迎合了他/她的偏好。为了更好地模拟历史序列的影响,以前的研究引入了项目关系的语义来捕捉用户的推荐需求。然而
- 多模态推荐系统综述
凤凰AI
推荐系统论文阅读人工智能数据挖掘机器学习
推荐系统(RS)已经成为在线服务不可或缺的工具。它们集成了各种深度学习技术,可以根据标识符和属性信息对用户偏好进行建模。随着短视频、新闻等多媒体服务的出现,在推荐的同时了解这些内容变得至关重要。此外,多模态特征也有助于缓解RS中的数据稀疏问题。因此,多模态推荐系统(multimodalrecommendationsSystem,MRS)近年来受到了学术界和业界的广泛关注。在本文中,我们将主要从技术
- DS Wannabe之5-AM Project: DS 30day int prep day10
wendyponcho
python机器学习
Q1.WhatisaRecommenderSystem?Arecommendersystemistodaywidelydeployedinmultiplefieldslikemovierecommendations,musicpreferences,socialtags,researcharticles,searchqueriesandsoon.Therecommendersystemsworka
- PSR
CaptainRoy
PSR(PHPStandardsRecommendation)是PHP框架之间标准的代码风格PSR-1:基本的代码风格PSR-2:严格的代码风格PSR-3:日志记录器接口PSR-4:自动加载PSR-1必须把PHP代码放在标签中类和方法名必须使用驼峰法常量名称必须全是大写字母,可以使用下划线把单词隔开PSR-2必须贯彻PSR-1代码风格使用四个空格缩进文件必须使用unix风格的换行符,最后要有一个空
- 因果推断推荐系统工具箱 - CFF(二)
processor4d
文章名称【CIKM-2021】【BeijingKeyLaboratoryofBigDataManagementandAnalysisMethods-AntGroup】CounterfactualReview-basedRecommendation核心要点文章旨在解决现有基于评论的推荐系统中存在的评论稀疏和不平衡的问题,提出在feature-aware的推荐场景下,利用反事实样本提升模型性能。作者通
- 论文笔记:相似感知的多模态假新闻检测
图学习的小张
论文笔记论文阅读python
整理了RecSys2020ProgressiveLayeredExtraction:ANovelMulti-TaskLearningModelforPersonalizedRecommendations)论文的阅读笔记背景模型实验论文地址:SAFE背景 在此之前,对利用新闻文章中文本信息和视觉信息之间的关系(相似性)的关注较少。这种相似性有助于识别虚假新闻,例如,虚假新闻也许会试图使用不相关的图
- Happier Hour —— A book recommendation
诚威_lol_中大努力中
storyandfeelinglife
2hourisenough,lesswillbecruel/stressful,morewillfeelemptinessSpendtimedoingsportsFeeltheawesomenessoflifeornature.....Thisbookisaboutthefeelingsoftime.Whenthingshaverelationswiththepsychology,theycanb
- 矢 杂货店_为instacart创建杂货产品推荐器
weixin_26729763
pythonjava
矢杂货店Intheecommerceshoppingexperienceproductrecommendationscomeinmanyforms:theymaybeusedtorecommendotherproductsononeproduct’spage(Amazon’s“Frequentlyboughttogether”featureforinstance)ortheymaybeusedon
- 【人工智能】神奇的Embedding:文本变向量,大语言模型智慧密码解析(10)
魔道不误砍柴功
AI大模型人工智能embedding语言模型
什么是嵌入?OpenAI的文本嵌入衡量文本字符串的相关性。嵌入通常用于:Search搜索(结果按与查询字符串的相关性排序)Clustering聚类(文本字符串按相似性分组)Recommendations推荐(推荐具有相关文本字符串的条目)Anomalydetection异常检测(识别出相关性很小的异常值)Diversitymeasurement多样性测量(分析相似性分布)Classificatio
- MySql修改字段类型和大小
on the way 123
mysql
MySql修改表字段的类型和大小原因:1,在我们设计表的时候,有时设计表字段女的大小和类型的时候,有时可能不合适,需要修改字段的大小2,修改表字段的常见2种,第一种修改大小,第二种修改数据类型sql语句第一种修改字段的大小原因是:第三方推送数据,这边接收数据,测试下那边recommendation这个字段是50个左右,之前设置是varchar(100)显然不够,根据Mysql的版本不同,汉字占字节
- 因果推断推荐系统工具箱 - CFF(一)
processor4d
文章名称【CIKM-2021】【BeijingKeyLaboratoryofBigDataManagementandAnalysisMethods-AntGroup】CounterfactualReview-basedRecommendation核心要点文章旨在解决现有基于评论的推荐系统中存在的评论稀疏和不平衡的问题,提出在feature-aware的推荐场景下,利用反事实样本提升模型性能。作者通
- 论文笔记:多任务学习模型:渐进式分层提取(PLE)含pytorch实现
图学习的小张
论文笔记论文阅读学习
整理了RecSys2020ProgressiveLayeredExtraction:ANovelMulti-TaskLearningModelforPersonalizedRecommendations)论文的阅读笔记背景模型代码论文地址:PLE背景 多任务学习(multi-tasklearning,MTL):给定m个学习任务,这m个任务或它们的一个子集彼此相关但不完全相同。简单地说就是一个模型
- composer中常提及到到PSR-4,什么是PSR呢
php转go
什么是PSRPSR是PHPStandardRecommendations(PHP推荐标准)的简写,由PHPFIG组织制定的PHP规范,是PHP开发的实践标准。PHPFIG,FIG是FrameworkInteroperabilityGroup(框架可互用性小组)的缩写,由几位开源框架的开发者成立于2009年,从那开始也选取了很多其他成员进来(包括但不限于Laravel,Joomla,Drupal,C
- 如何减小iOS包的大小
kakao6
https://www.jianshu.com/p/e76bdc940f28?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation1.配置编译选项GenetateDebugSymbols设置为NO2.适当舍弃架构arm73.删除无用的图片和音频文件LSUnusedResource
- Writing a Letter of Recommendation
0b23fbe0244f
WritingaLetterofRecommendationAddendumtoMakingtheRightMoves:APracticalGuidetoScientificManagementforPostdocsandNewFacultysecondeditionBurroughsWellcomeFundHowardHughesMedicalInstituteMakingtheRightMov
- 联邦推荐系统相关论文创新点总结
jieHeEternity
联邦学习联邦学习深度学习推荐系统联邦推荐系统
FD-GATDR:AFederated-Decentralized-LearningGraphAttentionNetworkforDoctorRecommendationUsingEHR本文的主要内容是基于电子健康记录(EHR)构建了一个医生推荐系统。该系统通过分析患者的EHR历史,提供个性化的医生推荐,以改善医疗系统的运行效率和发展远程医疗服务。为了解决数据异构性和数据隐私的挑战,文中提出了一
- Arxiv网络科学论文摘要4篇(2019-03-27)
ComplexLY
GEVR:针对手机用户群的活动场所推荐系统;生物医学领域科学与技术联动演变分析;通过筛选相关矩阵构建网络:零模型方法;利用动力学的网络重构与社区检测;GEVR:针对手机用户群的活动场所推荐系统原文标题:GEVR:AnEventVenueRecommendationSystemforGroupsofMobileUsers地址:http://arxiv.org/abs/1903.10512作者:Jas
- 推荐系统行为序列建模-GRU4Rec
GelaBute
深度学习session
推荐系统行为序列建模-GRU4Rec1.模型结构2.优化2.1SESSION-PARALLELMINI-BATCHES2.2SAMPLINGONTHEOUTPUT3.Loss《SESSION-BASEDRECOMMENDATIONSWITHRECURRENTNEURALNETWORKS》论文基于单次会话session进行推荐。1.模型结构整体结构比较简单,通过RNN的堆叠来抽取序列信息input:
- 因果推断推荐系统工具箱 - ULTR-CP(三)
processor4d
文章名称【WSDM-2021】【JilinUniversity-JD】UnbiasedLearningtoRankinFeedsRecommendation核心要点前两节,我们完整的描述了,作者提出的ULTR-CP以及如何利用regression-basedEM的方法来求解combinationalpropensity(准确的说,只有相关性用了regression,其他的都还是不同的EM,并且相关
- 推荐系统模型(一) DFN 详解 Deep Feedback Network for Recommendation
WitsMakeMen
推荐算法
背景在大多数的推荐系统中,往往注重于隐式正反馈(例如:点击),而忽略掉用户的其他行为(例如大多数CTR模型只考虑用户的喜欢,而忽略了不喜欢)。腾讯在DeepFeedbackNetworkforRecommendation一文中,提出了一个新颖的推荐系统模型,该模型使用了一个新的神经网络框架,考虑了用户显式/隐式的正负反馈,通过大量的实验证实了该模型的有效性和鲁棒性。先验知识显式反馈(explici
- 联邦学习论文阅读:Federated collaborative filtering
thormas1996
联邦学习联邦学习论文阅读
今年一月刚挂上arXiv的一篇联邦推荐文章Federatedcollaborativefilteringforprivacy-preservingpersonalizedrecommendationsystem。摘要作者将一个隐形反馈的CF模型修改成了联邦学习的框架,隐私性用Fed-Avg算法保证。总的来说,没什么创新。问题在保护用户隐私的情况下利用隐性反馈进行推荐框架一个横向联邦的框架,和goo
- 论文阅读:A Survey on Neural Recommendation: From Collaborative Filtering to Content and Context Enriched
三金samkam
论文阅读推荐系统深度学习机器学习人工智能神经网络
论文名字ASurveyonNeuralRecommendation:FromCollaborativeFilteringtoContentandContextEnrichedRecommendation来源年份2021.4.27作者LeWuMember,IEEE,XiangnanHeMember,IEEE,XiangWangMember,IEEE,KunZhangMember,IEEE,andMe
- django电影推荐系统
哈都婆
django
电影推荐启动./bin/pycharm.shdjango-adminstartprojectmovie_recommendation_projectcdmovie_recommendation_project/pythonmanage.pymovie_recommendation_apppythonmanage.pystartappmovle_recommendation_applspythonm
- 重点句式52
俗世尘沙
今天的句子:Irecognisethepositiveimpactthatmanyoftherecommendationscouldhave,suchasbanningfreeoffersforjunkfoodandrestrictionsonadvertising,andusingtaxincentivestomakehealthyfoodcheaper.Butyoucannothaveacom
- 可解释推荐系统工具箱 - VECF(一)
processor4d
文章名称【SIGIR-2019】【Tsinghua/RutgersUniversity】PersonalizedFashionRecommendationwithVisualExplanationsbasedonMultimodalAttentionNetwork核心要点文章旨在流行商品推荐领域中,物品图片影响力大,但不同用户对图片的不同部分注意程度不一的问题。利用用户评论文本信息作为弱监督信号,
- Do you have any recommendations...
有乌云
Haveanyrecommendationsforsth推荐...Ontherecommendationofsb/onsb'srecommendation在某人推荐之下...aletterofrecommendation/arecommendationletter推荐信Doyouhaveanyrecommendationsforanice,balancedred?Wechosethehotelon
- 因果推断推荐系统工具箱 - CausCF: Causal Collaborative Filtering for Recommendation Effect Estimation(一)
processor4d
文章名称【CIKM-2021】CausCF:CausalCollaborativeFilteringforRecommendationEffectEstimation核心要点通常我们都希望推荐系统能够更高效的推荐物品,但是高效率如何界定?文章作者认为最高效的物品是能够提高营收概率的物品(因为用户喜欢才会买,同时平台也因此而得到利润)。然而,推荐天然存在因果推断的根本问题(未被推荐的物品的效果是缺失
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交