【OpenCV】手势识别

手势动态识别(基于opencv的简单实现)
http://blog.csdn.net/anqing715/article/details/17653709


基于OpenCV的实时手势识别算法研究_许艳旭
http://wenku.baidu.com/view/c7a2c97e998fcc22bdd10d11.html


基于OpenCV动态手势识别的实现
http://wenku.baidu.com/view/e0c708efad51f01dc281f1dd.html
/************************************************************************/
/* 
Description:	手势检测
				先滤波去噪
				-->转换到HSV空间
				-->根据皮肤在HSV空间的分布做出阈值判断,这里用到了inRange函数,
				然后进行一下形态学的操作,去除噪声干扰,是手的边界更加清晰平滑
				-->得到的2值图像后用findContours找出手的轮廓,去除伪轮廓后,再用convexHull函数得到凸包络
Author:			Yang Xian
History:		
*/
/************************************************************************/
#include 	// for standard I/O
#include    // for strings
#include   // for controlling float print precision
#include   // string to number conversion

#include   // Gaussian Blur
#include         // Basic OpenCV structures (cv::Mat, Scalar)
#include   // OpenCV window I/O

using namespace cv;
using namespace std;

int main(int argc, char *argv[])
{
	const std::string sourceReference = "test3.avi";
	int delay = 1;

	char c;
	int frameNum = -1;			// Frame counter

	VideoCapture captRefrnc(sourceReference);

	if ( !captRefrnc.isOpened())
	{
		// 		cout  << "Could not open reference " << sourceReference << endl;
		return -1;
	}

	Size refS = Size( (int) captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH),
		(int) captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT) );

	bool bHandFlag = false;

	const char* WIN_SRC = "Source";
	const char* WIN_RESULT = "Result";

	// Windows
	namedWindow(WIN_SRC, CV_WINDOW_AUTOSIZE );
	namedWindow(WIN_RESULT, CV_WINDOW_AUTOSIZE);

	Mat frame;	// 输入视频帧序列
	Mat frameHSV;	// hsv空间
	Mat mask(frame.rows, frame.cols, CV_8UC1);	// 2值掩膜
	Mat dst(frame);	// 输出图像

// 	Mat frameSplit[4];

	vector< vector > contours;	// 轮廓
	vector< vector > filterContours;	// 筛选后的轮廓
	vector< Vec4i > hierarchy;	// 轮廓的结构信息
	vector< Point > hull;	// 凸包络的点集

	while(true) //Show the image captured in the window and repeat
	{
		captRefrnc >> frame;

		if( frame.empty() )
		{
			cout << " < < <  Game over!  > > > ";
			break;
		}
		imshow( WIN_SRC, frame);

		// Begin

		// 中值滤波,去除椒盐噪声
		medianBlur(frame, frame, 5);
// 		GaussianBlur( frame, frameHSV, Size(9, 9), 2, 2 );
// 		imshow("blur2", frameHSV);
//		pyrMeanShiftFiltering(frame, frameHSV, 10, 10);
//	 	imshow(WIN_BLUR, frameHSV);
		// 转换到HSV颜色空间,更容易处理
		cvtColor( frame, frameHSV, CV_BGR2HSV );

// 		split(frameHSV, frameSplit);
// 		imshow(WIN_H, frameSplit[0]);
// 		imshow(WIN_S, frameSplit[1]);
// 		imshow(WIN_V, frameSplit[2]);

		Mat dstTemp1(frame.rows, frame.cols, CV_8UC1);
		Mat dstTemp2(frame.rows, frame.cols, CV_8UC1);
		// 对HSV空间进行量化,得到2值图像,亮的部分为手的形状
		inRange(frameHSV, Scalar(0,30,30), Scalar(40,170,256), dstTemp1);
		inRange(frameHSV, Scalar(156,30,30), Scalar(180,170,256), dstTemp2);
		bitwise_or(dstTemp1, dstTemp2, mask);
// 		inRange(frameHSV, Scalar(0,30,30), Scalar(180,170,256), dst);		

		// 形态学操作,去除噪声,并使手的边界更加清晰
		Mat element = getStructuringElement(MORPH_RECT, Size(3,3));
		erode(mask, mask, element);
		morphologyEx(mask, mask, MORPH_OPEN, element);
		dilate(mask, mask, element);
		morphologyEx(mask, mask, MORPH_CLOSE, element);

		frame.copyTo(dst, mask);

		contours.clear();
		hierarchy.clear();
		filterContours.clear();
		// 得到手的轮廓
		findContours(mask, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
		// 去除伪轮廓
		for (size_t i = 0; i < contours.size(); i++)
		{
// 			approxPolyDP(Mat(contours[i]), Mat(approxContours[i]), arcLength(Mat(contours[i]), true)*0.02, true);
			if (fabs(contourArea(Mat(contours[i]))) > 30000)	//判断手进入区域的阈值
			{
				filterContours.push_back(contours[i]);
			}
		}
		// 画轮廓
		drawContours(dst, filterContours, -1, Scalar(0,0,255), 3/*, 8, hierarchy*/);
		// 得到轮廓的凸包络
		for (size_t j=0; j

你可能感兴趣的:(OpenCV)