模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
模型可解释性:基于因果推理的反事实生成与决策可视化
燃灯工作室
Ai人工智能数学建模学习机器学习
1.技术原理与数学公式1.1因果推理基础结构方程模型(SEM):X=fX(PaX,UX)X=f_X(Pa_X,U_X)X=fX(PaX,UX)其中PaXPa_XPaX为父节点集合,UXU_XUX为外生变量反事实定义:YX=x(u)=Ydo(X=x)(u)Y_{X=x}(u)=Y_{do(X=x)}(u)YX=x(u)=Ydo(X=x)(u)表示在相同背景条件uuu下,强制变量XXX取xxx时的结果
自动化特征选择:基于模型重要性的递归消除原理与实战指南
燃灯工作室
Ai自动化运维
一、技术原理与数学公式1.1递归特征消除(RFE)核心思想J(S)=∑i=1n∣wi∣(特征重要性评分)J(S)=\sum_{i=1}^n|w_i|\quad(特征重要性评分)J(S)=i=1∑n∣wi∣(特征重要性评分)Sk+1=Sk−argminfJ(Sk∖{f})(迭代消除策略)S_{k+1}=S_k-\arg\min_{f}J(S_k\setminus\{f\})\quad(迭代消除策
Nature:你的大脑衰老速度受这64个基因影响
量子位
你的大脑衰老速度,原来受这64个基因影响!事情是这样的。根据Nature最新报道,科学家们通过利用AI模型分析大量脑部扫描和遗传数据,确定了64个影响大脑衰老速度的基因,并指出了13种潜在的抗衰老药物。相关研究发表在最新一期Science子刊《ScienceAdvances》上。按照Nature的评价,这是尝试确定影响器官衰退遗传因素这一研究领域里:迄今为止规模最大的一次尝试都柏林圣三一学院的神经
推理流水线DAG调度:多模型组合执行优化方案
燃灯工作室
Ai人工智能数学建模学习机器学习计算机视觉
一、技术原理与数学模型1.1DAG调度核心公式设推理流水线由n个模型节点组成,定义:V={v1,v2,...,vn}V=\{v_1,v_2,...,v_n\}V={v1,v2,...,vn}为节点集合E={(vi,vj)∣vi→vj}E=\{(v_i,v_j)|v_i\rightarrowv_j\}E={(vi,vj)∣vi→vj}为边集合C(vi)C(v_i)C(vi)为节点viv_ivi的计算
边缘设备模型量化部署:TFLite INT8校准实现细节深度解析
燃灯工作室
Ai人工智能机器学习
一、技术原理与数学公式INT8量化的核心是通过线性映射将浮点数值范围([-max,max])映射到8位整数范围([-128,127])。校准过程通过分析真实数据分布确定最优缩放因子(scale)和零点(zeropoint):量化公式:Q=round(float_valuescale)+zero_pointQ=round(\frac{float\_value}{scale})+zero\_point
Crawl4AI 与 BrowserUseTool 的详细对比
燃灯工作室
Lmplement人工智能学习数学建模
以下是Crawl4AI与BrowserUseTool的详细对比,涵盖功能、技术实现、适用场景等核心维度:1.核心定位对比工具Crawl4AIBrowserUseTool类型专为AI优化的网络爬虫框架浏览器自动化工具(模拟人类操作浏览器)核心目标高效获取结构化数据供AI训练/推理处理需要浏览器交互的动态网页任务典型应用大规模数据抓取、知识库构建登录受限网站、抓取JavaScript渲染内容2.技术实
基于oracle linux的 DBI/DBD 标准化安装文档(三)
oracle
一、安装DBIDBI(DatabaseInterface)是perl连接数据库的接口。其是perl连接数据库的最优方法,他支持包括Orcale,Sybase,mysql,db2等绝大多数的数据库,下面将简要介绍其安装方法。1.1解压tar-zxvfDBI-1.616_901.tar.gz1.2安装依赖yuminstallperl-ExtUtils-CBuilderperl-ExtUtils-Mak
基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
深度学习
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
深度解析A/B测试中的哈希分桶策略:从原理到实战的流量分层方案
燃灯工作室
Python哈希算法算法
一、技术原理与数学基础1.1哈希分桶的核心机制核心公式:桶编号=Hash(用户ID+实验层种子)modN基于**双重哈希(DoubleHashing)**实现流量的完全正交切割:{∀u∈U,Layerij(u)=H(H(u∣∣seedj)∣∣seedi)mod N∀i≠k,H(⋅)满足P(Layeri(u)=m∩Layerk(u)=n)=1/(N2)\begin{cases}\forallu\i
77.HarmonyOS NEXT ImageViewerView 组件深度剖析: Swiper容器与懒加载深度解析
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!#HarmonyOSNEXTImageViewerView组件深度剖析:Swiper容器与懒加载深度解析一、组件基础结构@ComponentexportstructImageViewerViewComponent{//状态管理@StateisEnableSwip
linux常用基础命令_最新
脚大江山稳
linux运维服务器
常用命令查看当前目录下个各个文件大小查看当前系统储存使用情况查看当前路径删除当前目录下所有包含".log"的文件linux开机启动jar更改自动配置文件后操作关闭自启动linux静默启动java服务查询端口被占用查看软件版本重启关机开机启动取别名清空当前行创建文件touch创建文件夹查找文件/文件名/大小查找查看文件内容cat/more删除文件或文件夹管道符|过滤grep命令echo命令输出内容重
Python函数中的*args和**kwargs
俊昭喜喜里
python开发语言
在python中,我们常常会看见*args和**kwargs这样的写法。其实这是编程人员约定的变量名字,args是arguments的缩写,表示位置参数;kwargs是keywordarguments的缩写,表示关键字参数。这其实就是Python中可变参数的两种形式,并且*args必须放在**kwargs的前面,因为位置参数在关键字参数的前面。一.*args的用法*args用于传递一个任意数量的位
软件测试之测试用例详细解读
隐居人家的炊烟
测试用例软件测试自动化测试
一、通用测试用例八要素1、用例编号;2、测试项目;3、测试标题;4、重要级别;5、预置条件;6、测试输入;7、操作步骤;8、预期输出二、具体分析通用测试用例八要素1、用例编号一般是数字和字符组合成的字符串,可以包括(下划线、单词缩写、数字等等),但是需要注意的是,尽量不要写汉语拼音,因为拼音的意义可能有好几种,有可能会导致乱码;用例编号具有唯一性和易识别性。(比如说我们唯一标识一个人:中国-上海市
基于Java的家居设备控制系统设计与实现
不知江月待何人..
javajava开发语言
目录项目目标设计思路系统架构核心实现运行演示存在问题与优化总结项目目标实现四种家居设备(灯/空调/电视/洗衣机)的智能控制系统,要求:统一管理设备开关状态支持状态反转操作提供简洁的控制接口具备扩展性支持新设备接入设计思路面向对象设计原则抽象原则:通过接口定义通用行为继承机制:建立家电父类统一管理基础属性多态应用:使用父类数组管理子类对象单例模式:控制系统唯一入口类关系图«interface»Swi
Java final关键字
不知江月待何人..
javajava开发语言
一、final关键字概述final是Java中用于限制修改的关键字,它可以修饰类、方法和变量,被修饰的实体将具有"不可改变"的特性。合理使用final关键字能提高代码安全性、可读性,并有助于JVM进行优化。二、final修饰类1.特性被final修饰的类不能被继承常用于设计不需要扩展的类或安全敏感类2.代码示例finalclassPerson{//无法被继承的最终类//类内容...}//错误示例:
模型蒸馏:从复杂到精简,AI技术的“瘦身”秘籍
lmtealily
人工智能
引言在人工智能的浪潮中,大型模型如BERT、GPT系列等在自然语言处理(NLP)、计算机视觉(CV)等领域取得了显著的成果。然而,这些“庞然大物”通常拥有数十亿甚至数千亿个参数,计算和存储成本极高,难以部署到资源受限的设备上。为了解决这一问题,模型蒸馏技术应运而生。模型蒸馏是一种将大型复杂模型的知识迁移到小型简单模型的技术,旨在保持高性能的同时大幅减少模型的参数量和计算复杂度。本文将带你深入了解模
【CSS 面经】如何画一条 0.5px 的线 ️
Peter-Lu
#CSS面经css前端javascriptcss3html
文章目录一、为什么浏览器中0.5px难以实现?二、实现0.5px线条的几种方法1.使用`transform:scale()`实现缩放2.使用`border`和`transform`结合3.使用`box-shadow`实现0.5px4.使用伪元素`::after`结合`transform`三、如何选择合适的方法?在前端开发中,我们经常会遇到这样一个问题:如何画一条0.5px的线?由于像素是浏览器渲染
干货:Farrow设计实现详解
jz_ddk
算法机器学习人工智能python
Farrow结构的系数设计是其实现可变分数延迟或动态群时延调整的关键步骤。其核心思想是将每个滤波器抽头的系数表示为多项式函数(通常以参数uuu为变量),通过优化多项式系数实现不同延迟下的滤波特性。以下是Farrow系数设计的主要方法及步骤:1.设计目标与基本模型Farrow结构的一般形式为:H(z,μ)=∑m=0Mμm⋅(∑k=0Nck,mz−k)H(z,\mu)=\sum_{m=0}^{M}\m
如何提高测试用例覆盖率?
测试老哥
测试用例测试工具软件测试自动化测试python测试覆盖率职场和发展
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快我们将讨论测试覆盖率的相关问题,以及它如何帮助提高软件质量的。测试覆盖率概述测试覆盖率被定义为一种测试技术指标,它表明我们的测试用例是否真正完全覆盖了应用程序代码中的各种可能以及在运行这些测试用例时执行了多少代码。如果有10个需求并创建了100个场景测试用例,并且执行了90个测试用例,则测试覆盖率为90%。现在,基于这个指标,测试人员可以
不知道天气咋样?一起用Python爬取天气数据分析告诉你
Dragon少年
Pythonpython爬虫图表可视化
前言今天我们分享一个小案例,获取天气数据,进行可视化分析,带你直观了解天气情况!一、核心功能设计总体来说,我们需要先对中国天气网中的天气数据进行爬取,保存为csv文件,并将这些数据进行可视化分析展示。拆解需求,大致可以整理出我们需要分为以下几步完成:通过爬虫获取中国天气网7.20-7.21的降雨数据,包括城市,风力方向,风级,降水量,相对湿度,空气质量。对获取的天气数据进行预处理,分析河南的风力等
华为OD机试 - 垃圾短信识别(Java 2024 E卷 100分)
哪 吒
华为odjava开发语言
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试(JAVA)真题(E卷+D卷+A卷+B卷+C卷)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述大⼤⼯对垃圾短信深恶痛绝,希望能
使用SetupTools 管理你的项目打包工作
魔王阿卡纳兹
开源项目观察Python学习札记pythonsetuptools代码分发
Setuptools是一个用于Python的包管理工具,主要用于构建、打包和分发Python软件包。它是distutils的增强版,提供了更多的功能和灵活性,是Python包管理的核心模块之一。功能与特点依赖管理:Setuptools提供了强大的依赖管理功能,可以自动解析和安装软件包所需的依赖项。自动生成入口点:它能够自动发现并生成命令行脚本的入口点,例如将Python脚本转换为可执行文件。模块发
Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
[置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =