c++中引入了右值引用和移动语义,可以避免无谓的复制,提高程序性能。有点难理解,于是花时间整理一下自己的理解。
C++中所有的值都必然属于左值、右值二者之一。左值是指表达式结束后依然存在的持久化对象,右值是指表达式结束时就不再存在的临时对象。所有的具名变量或者对象都是左值,而右值不具名。很难得到左值和右值的真正定义,但是有一个可以区分左值和右值的便捷方法:看能不能对表达式取地址,如果能,则为左值,否则为右值。
看见书上又将右值分为将亡值和纯右值。纯右值就是c++98标准中右值的概念,如非引用返回的函数返回的临时变量值;一些运算表达式,如1+2产生的临时变量;不跟对象关联的字面量值,如2,‘c’,true,“hello”;这些值都不能够被取地址。
而将亡值则是c++11新增的和右值引用相关的表达式,这样的表达式通常时将要移动的对象、T&&函数返回值、std::move()函数的返回值等
不懂将亡值和纯右值的区别其实没关系,统一看作右值即可,不影响使用。
int i=0;// i是左值, 0是右值
class A {
public:
int a;
};
A getTemp()
{
return A();
}
A a = getTemp(); // a是左值 getTemp()的返回值是右值(临时变量)
c++98中的引用很常见了,就是给变量取了个别名,在c++11中,因为增加了右值引用(rvalue reference)的概念,所以c++98中的引用都称为了左值引用(lvalue reference)。
int a = 10;
int& refA = a; // refA是a的别名, 修改refA就是修改a, a是左值,左移是左值引用
int& b = 1; //编译错误! 1是右值,不能够使用左值引用
c++11中的右值引用使用的符号是&&,如
int&& a = 1; //实质上就是将不具名(匿名)变量取了个别名
int b = 1;
int && c = b; //编译错误! 不能将一个左值复制给一个右值引用
class A {
public:
int a;
};
A getTemp()
{
return A();
}
A && a = getTemp(); //getTemp()的返回值是右值(临时变量)
getTemp()返回的右值本来在表达式语句结束后,其生命也就该终结了(因为是临时变量),而通过右值引用,该右值又重获新生,其生命期将与右值引用类型变量a的生命期一样,只要a还活着,该右值临时变量将会一直存活下去。实际上就是给那个临时变量取了个名字。
注意:这里a的类型是右值引用类型(int &&),但是如果从左值和右值的角度区分它,它实际上是个左值。因为可以对它取地址,而且它还有名字,是一个已经命名的右值。
所以,左值引用只能绑定左值,右值引用只能绑定右值,如果绑定的不对,编译就会失败。但是,常量左值引用却是个奇葩,它可以算是一个“万能”的引用类型,它可以绑定非常量左值、常量左值、右值,而且在绑定右值的时候,常量左值引用还可以像右值引用一样将右值的生命期延长,缺点是,只能读不能改。
const int & a = 1; //常量左值引用绑定 右值, 不会报错
class A {
public:
int a;
};
A getTemp()
{
return A();
}
const A & a = getTemp(); //不会报错 而 A& a 会报错
事实上,很多情况下我们用来常量左值引用的这个功能却没有意识到,如下面的例子:
#include
using namespace std;
class Copyable {
public:
Copyable(){}
Copyable(const Copyable &o) {
cout << "Copied" << endl;
}
};
Copyable ReturnRvalue() {
return Copyable(); //返回一个临时对象
}
void AcceptVal(Copyable a) {
}
void AcceptRef(const Copyable& a) {
}
int main() {
cout << "pass by value: " << endl;
AcceptVal(ReturnRvalue()); // 应该调用两次拷贝构造函数
cout << "pass by reference: " << endl;
AcceptRef(ReturnRvalue()); //应该只调用一次拷贝构造函数
}
当我敲完上面的例子并运行后,发现结果和我想象的完全不一样!期望中AcceptVal(ReturnRvalue())需要调用两次拷贝构造函数,一次在ReturnRvalue()函数中,构造好了Copyable对象,返回的时候会调用拷贝构造函数生成一个临时对象,在调用AcceptVal()时,又会将这个对象拷贝给函数的局部变量a,一共调用了两次拷贝构造函数。而AcceptRef()的不同在于形参是常量左值引用,它能够接收一个右值,而且不需要拷贝。
而实际的结果是,不管哪种方式,一次拷贝构造函数都没有调用!
这是由于编译器默认开启了返回值优化(RVO/NRVO, RVO, Return Value Optimization 返回值优化,或者NRVO, Named Return Value Optimization)。编译器很聪明,发现在ReturnRvalue内部生成了一个对象,返回之后还需要生成一个临时对象调用拷贝构造函数,很麻烦,所以直接优化成了1个对象对象,避免拷贝,而这个临时变量又被赋值给了函数的形参,还是没必要,所以最后这三个变量都用一个变量替代了,不需要调用拷贝构造函数。
虽然各大厂家的编译器都已经都有了这个优化,但是这并不是c++标准规定的,而且不是所有的返回值都能够被优化,而这篇文章的主要讲的右值引用,移动语义可以解决编译器无法解决的问题。
为了更好的观察结果,可以在编译的时候加上-fno-elide-constructors选项(关闭返回值优化)。
// g++ test.cpp -o test -fno-elide-constructors
pass by value:
Copied
Copied //可以看到确实调用了两次拷贝构造函数
pass by reference:
Copied
上面这个例子本意是想说明常量左值引用能够绑定一个右值,可以减少一次拷贝(使用非常量的左值引用会编译失败),但是顺便讲到了编译器的返回值优化。。编译器还是干了很多事情的,很有用,但不能过于依赖,因为你也不确定它什么时候优化了什么时候没优化。
总结一下,其中T是一个具体类型:
移动构造和移动赋值
回顾一下如何用c++实现一个字符串类MyString,MyString内部管理一个C语言的char *数组,这个时候一般都需要实现拷贝构造函数和拷贝赋值函数,因为默认的拷贝是浅拷贝,而指针这种资源不能共享,不然一个析构了,另一个也就完蛋了。
具体代码如下:
#include
#include
#include
using namespace std;
class MyString
{
public:
static size_t CCtor; //统计调用拷贝构造函数的次数
// static size_t CCtor; //统计调用拷贝构造函数的次数
public:
// 构造函数
MyString(const char* cstr=0){
if (cstr) {
m_data = new char[strlen(cstr)+1];
strcpy(m_data, cstr);
}
else {
m_data = new char[1];
*m_data = '\0';
}
}
// 拷贝构造函数
MyString(const MyString& str) {
CCtor ++;
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
}
// 拷贝赋值函数 =号重载
MyString& operator=(const MyString& str){
if (this == &str) // 避免自我赋值!!
return *this;
delete[] m_data;
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
return *this;
}
~MyString() {
delete[] m_data;
}
char* get_c_str() const { return m_data; }
private:
char* m_data;
};
size_t MyString::CCtor = 0;
int main()
{
vector vecStr;
vecStr.reserve(1000); //先分配好1000个空间,不这么做,调用的次数可能远大于1000
for(int i=0;i<1000;i++){
vecStr.push_back(MyString("hello"));
}
cout << MyString::CCtor << endl;
}
代码看起来挺不错,却发现执行了1000次拷贝构造函数,如果MyString(“hello”)构造出来的字符串本来就很长,构造一遍就很耗时了,最后却还要拷贝一遍,而MyString(“hello”)只是临时对象,拷贝完就没什么用了,这就造成了没有意义的资源申请和释放操作,如果能够直接使用临时对象已经申请的资源,既能节省资源,又能节省资源申请和释放的时间。而C++11新增加的移动语义就能够做到这一点。
要实现移动语义就必须增加两个函数:移动构造函数和移动赋值构造函数。
#include
#include
#include
using namespace std;
class MyString
{
public:
static size_t CCtor; //统计调用拷贝构造函数的次数
static size_t MCtor; //统计调用移动构造函数的次数
static size_t CAsgn; //统计调用拷贝赋值函数的次数
static size_t MAsgn; //统计调用移动赋值函数的次数
public:
// 构造函数
MyString(const char* cstr=0){
if (cstr) {
m_data = new char[strlen(cstr)+1];
strcpy(m_data, cstr);
}
else {
m_data = new char[1];
*m_data = '\0';
}
}
// 拷贝构造函数
MyString(const MyString& str) {
CCtor ++;
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
}
// 移动构造函数
MyString(MyString&& str) noexcept
:m_data(str.m_data) {
MCtor ++;
str.m_data = nullptr; //不再指向之前的资源了
}
// 拷贝赋值函数 =号重载
MyString& operator=(const MyString& str){
CAsgn ++;
if (this == &str) // 避免自我赋值!!
return *this;
delete[] m_data;
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
return *this;
}
// 移动赋值函数 =号重载
MyString& operator=(MyString&& str) noexcept{
MAsgn ++;
if (this == &str) // 避免自我赋值!!
return *this;
delete[] m_data;
m_data = str.m_data;
str.m_data = nullptr; //不再指向之前的资源了
return *this;
}
~MyString() {
delete[] m_data;
}
char* get_c_str() const { return m_data; }
private:
char* m_data;
};
size_t MyString::CCtor = 0;
size_t MyString::MCtor = 0;
size_t MyString::CAsgn = 0;
size_t MyString::MAsgn = 0;
int main()
{
vector vecStr;
vecStr.reserve(1000); //先分配好1000个空间
for(int i=0;i<1000;i++){
vecStr.push_back(MyString("hello"));
}
cout << "CCtor = " << MyString::CCtor << endl;
cout << "MCtor = " << MyString::MCtor << endl;
cout << "CAsgn = " << MyString::CAsgn << endl;
cout << "MAsgn = " << MyString::MAsgn << endl;
}
/* 结果
CCtor = 0
MCtor = 1000
CAsgn = 0
MAsgn = 0
*/
可以看到,移动构造函数与拷贝构造函数的区别是,拷贝构造的参数是const MyString& str,是常量左值引用,而移动构造的参数是MyString&& str,是右值引用,而MyString(“hello”)是个临时对象,是个右值,优先进入移动构造函数而不是拷贝构造函数。而移动构造函数与拷贝构造不同,它并不是重新分配一块新的空间,将要拷贝的对象复制过来,而是"偷"了过来,将自己的指针指向别人的资源,然后将别人的指针修改为nullptr,这一步很重要,如果不将别人的指针修改为空,那么临时对象析构的时候就会释放掉这个资源,"偷"也白偷了。下面这张图可以解释copy和move的区别。
不用奇怪为什么可以抢别人的资源,临时对象的资源不好好利用也是浪费,因为生命周期本来就是很短,在你执行完这个表达式之后,它就毁灭了,充分利用资源,才能很高效。
对于一个左值,肯定是调用拷贝构造函数了,但是有些左值是局部变量,生命周期也很短,能不能也移动而不是拷贝呢?C++11为了解决这个问题,提供了std::move()方法来将左值转换为右值,从而方便应用移动语义。我觉得它其实就是告诉编译器,虽然我是一个左值,但是不要对我用拷贝构造函数,而是用移动构造函数吧。
int main()
{
vector vecStr;
vecStr.reserve(1000); //先分配好1000个空间
for(int i=0;i<1000;i++){
MyString tmp("hello");
vecStr.push_back(tmp); //调用的是拷贝构造函数
}
cout << "CCtor = " << MyString::CCtor << endl;
cout << "MCtor = " << MyString::MCtor << endl;
cout << "CAsgn = " << MyString::CAsgn << endl;
cout << "MAsgn = " << MyString::MAsgn << endl;
cout << endl;
MyString::CCtor = 0;
MyString::MCtor = 0;
MyString::CAsgn = 0;
MyString::MAsgn = 0;
vector vecStr2;
vecStr2.reserve(1000); //先分配好1000个空间
for(int i=0;i<1000;i++){
MyString tmp("hello");
vecStr2.push_back(std::move(tmp)); //调用的是移动构造函数
}
cout << "CCtor = " << MyString::CCtor << endl;
cout << "MCtor = " << MyString::MCtor << endl;
cout << "CAsgn = " << MyString::CAsgn << endl;
cout << "MAsgn = " << MyString::MAsgn << endl;
}
/* 运行结果
CCtor = 1000
MCtor = 0
CAsgn = 0
MAsgn = 0
CCtor = 0
MCtor = 1000
CAsgn = 0
MAsgn = 0
*/
本文转载自 https://www.jianshu.com/p/d19fc8447eaa